期刊文献+

基于独立分量分析的多天线空时盲接收方案 被引量:4

Multi-antenna space-time blind receiving approach based on independent component analysis
下载PDF
导出
摘要 将独立分量分析(ICA)技术应用于无线通信环境中,通过分析空时分组码(STBC)和垂直—贝尔实验室分层空时(V-BLAST)的本质结构,建立了多种适用于ICA的特定通信系统模型,并以此实现了对发射信号的盲检测,从而代替了基于信道估计的传统接收方法。理论分析表明,ICA盲接收技术的应用可以有效提高系统对信道估计错误的顽健性和系统设计的灵活性。仿真结果验证了所提方案的有效性,并对算法实现的复杂度和收敛特性进行了分析。 An independent component analysis(ICA) technique was considered to be exploited to the wireless commu-nication contexts,and it was used to detect the transmitted signals blindly,which need not channel estimation.By ana-lyzing the essential structures of STBC(space-time block coding) and V-BLAST(vertical Bell-Labs layered space time) systems,several specific models for the ICA were established.The robustness against channel estimation errors and the flexibility of the system design could be obtained by using the ICA based schemes.Simulation results demonstrate the effectiveness of the proposed approach,furthermore,the complexity and convergence of the ICA based schemes are also discussed.
出处 《通信学报》 EI CSCD 北大核心 2010年第12期63-71,共9页 Journal on Communications
基金 国家自然科学基金资助项目(60872024) 高等学校科技创新工程重大项目培育基金资助项目(708059) 移动通信国家重点实验室开放基金资助项目(2010D10) 综合业务网国家重点试验室开放基金资助项目(ISN9-03) 山东大学自主创新基金资助项目(2010JC007)~~
关键词 空时系统 空时分组码 垂直-贝尔实验室分层空时 独立分量分析 space-time systems space-time block coding vertical Bell-Labs layered space time independent component analysis
  • 相关文献

参考文献16

  • 1ALAMOUTI S M.A simple transmit diversity technique for wireless communications[J].IEEE Journal on Selec Areas in Comm,1998,16(8):1451-1458. 被引量:1
  • 2WOLNIANSKY P W,FOSCHINI G J,GOLDEN G D,et al.V-BLAST:An architecture for realizing very high data rates over the rich-scattering wireless channel[A].Proc International Symposium on Signals,Systems,and Electronics (ISSSE'98)[C].Pisa,Italy,1998.295-300. 被引量:1
  • 3COMON P.Independent component analysis,a new concept?[J].Signal Processing,1994,36(3):287-314. 被引量:1
  • 4HYVARINEN A,PAJUNEN P.Nonlinear independent component analysis:existence and uniqueness results[J].Neural Networks,1999,12(3):429-439. 被引量:1
  • 5许宏吉,刘琚,谷波,胡慧博.空时分组码通信中的一类ICA盲检测方案[J].通信学报,2007,28(6):12-19. 被引量:7
  • 6谷波,刘琚,许宏吉.基于独立分量分析的正交空时分组编码盲检测方案[J].通信学报,2006,27(12):127-131. 被引量:1
  • 7LIU J,ISERTE A P,LAGUNAS M A.Blind separation of OSTBC signals using ICA neural networks[A].IEEE International Symposium on Signal Processing and Information Technology (ISSPIT'03)[C].Darmstadt,Germany,2003.502-505. 被引量:1
  • 8TAROKH V,JAFARKHANI H,CALDERBANK A R.Space-time block codes from orthogonal designs[J].IEEE Trans Inform Theory,1999,45(5):1456-1467. 被引量:1
  • 9HYVARINEN A.Survey on independent component analysis[J].Neural Computing Surveys,1999,2:94-128. 被引量:1
  • 10CARDOSO J F.Blind signal separation:statistical principles[J].Proceedings of the IEEE,1998,86(10):2009-2025. 被引量:1

二级参考文献23

  • 1ALAMOUTI S M. A simple transmit diversity technique for wireless communications[J]. IEEE Journal on Selec Areas in Comm, 1998,16(8): 1451-1458. 被引量:1
  • 2TAROKH V. Space-time block codes from orthogonal designs[J].IEEE Trans Inform Theory, 1999, 45(5): 1456-1467. 被引量:1
  • 3STOICA P, GANESAN G. Space-time block codes: trained, blind andsemi-blind detection[A]. Proc of IEEE ICASSP2002[C]. 2002.1609-1612. 被引量:1
  • 4XU H J, LIU J, HUH B. Blind detection based space-time block coding with antenna subset selection[A].Proc the Seventh International Conference on Signal Processing (ICSP04)[C]. Beijing, China, 2004.1731-1734. 被引量:1
  • 5LIU J, ISERTE A P, LAGUNAS M A. Blind separation of OSTBC signals using ICA neural networks[A]. IEEE International Symposium on Signal Processing and Information Technology[C]. Darmstadt,Germany, 2003. 14-17. 被引量:1
  • 6CARDOSO J F, LAHELD B H. Fquivariant adaptive source separation[J]. IEEE Trans Signal Proc, 1996, 44(12): 3017-3030. 被引量:1
  • 7RINAS J, KAMMEYER K D. Comparison of blind source separation methods based on iterative algorithms[A]. 5th International ITG Conference on Source and Channel Coding(SCC04)[C]. Erlangen, Germany, 2004. 14-16. 被引量:1
  • 8HYVARINEN A,OJA E.A fast fixed-point algorithm for independent component analysis[J].Neural Computation,1997,9(7):1483-1492. 被引量:1
  • 9HYVARINEN A,KARHUNEN J,OJA E.Independent Component Analysis[M].New York:John Wiley & Sons,2001. 被引量:1
  • 10ALAMOUTI S M.A simple transmit diversity technique for wireless communications[J].IEEE Journal on Selec Areas in Comm,1998,16(8):1451-1458. 被引量:1

共引文献6

同被引文献104

  • 1付卫红,杨小牛,刘乃安,曾兴雯.一种新的通信信号盲分离算法-EASIBSA算法[J].武汉理工大学学报,2008,30(1):91-94. 被引量:1
  • 2张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:210
  • 3张天骐,林孝康,周正中.一种直扩信号伪码周期及序列的盲估计方法[J].电波科学学报,2005,20(3):400-405. 被引量:27
  • 4冯祥,李建东.调制识别算法及性能分析[J].电波科学学报,2005,20(6):737-740. 被引量:14
  • 5Jutten C, Herauh J. Blind separation of sources, Part Ⅰ: An adaptive algorithm based on neuromimetic architecture [ J ]. Signal Processing, 1991,24 ( 1 ) : 1-10. 被引量:1
  • 6Bell A J, Sejnowski T J. An information-maximization ap- proach to blind separation and blind deconvolution [ J ]. Neural Computation, 1995,7 : 1129-1159. 被引量:1
  • 7Cichocki A, Amari S. Adaptive blind signal and image processing :learning algorithms and applications [ M ]. New York : Wiley,2002. 被引量:1
  • 8Lee T W, Girolami M, Sejnowski T J, et al. Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources [J]. Neural Computation, 1999,11 ( 2 ) :409-433. 被引量:1
  • 9Hyviirinen A. Fast and robust fixed-point algorithms for independent component analysis [ J ]. IEEE Transactions on Neural Networks, 1999,10(3 ) :626-634. 被引量:1
  • 10Hyvarinen A, Cristescu R, Oja E. A fast algorithm for esti- mating overcomplete ICA bases for image windows [ C ]// Proceedings of International Joint Conference on Neural Networks. Washington D C :IEEE, 1999. 被引量:1

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部