期刊文献+

一种求解动态多目标优化问题的粒子群算法 被引量:8

Particle Swarm Algorithm for Solving Dynamic Multi-objective Optimization Problems
下载PDF
导出
摘要 针对时间变量取值于正有理数集+、自变量的维数随时间可发生变化的一类动态多目标优化问题提出了一种求解的粒子群算法。该算法通过引入新的变异算子和自适应动态变化惯性因子,有效地避免了粒子群算法易陷入局部最优的缺陷;同时,给出了一种判断环境变化的有效规则,极大地增强了算法跟踪问题环境变化的能力,提高了算法的有效性。计算机仿真表明新算法对动态多目标优化问题的求解十分有效。 For a class of dynamic multi-objective optimization problems,in which the time variable was defined on positive rational number set and the dimension of independent variable changed with the time,a new particle swarm algorithm was proposed.By introducing the new mutation operator and the adaptive dynamic changing inertia weight,the proposed algorithm could effectively avoid the defects of plunging into the local optimal of the particle swarm algorithm.Also,an effective rule used to judge the environment changing was given to increase the environment changing detecting ability and improve the effectiveness of the algorithm.The simulation results show that the proposed algorithm is effective for solving the dynamic multi-objective optimization problems.
作者 刘淳安
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第2期288-293,共6页 Journal of System Simulation
基金 国家自然科学基金(60805016) 陕西省自然科学基础研究计划项目(2009JM1013) 陕西省教育厅科研计划项目(09JK329) 宝鸡文理学院重点科研项目(ZK1013)
关键词 动态多目标优化 粒子群算法 变维空间 PARETO最优解 dynamic multi-objective optimization particle swarm algorithm changing dimension space Pareto optimization solutions
  • 相关文献

参考文献15

二级参考文献47

  • 1李海生,朱学峰.自抗扰控制器参数整定与优化方法研究[J].控制工程,2004,11(5):419-423. 被引量:50
  • 2沈艳,郭兵,古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报,2005,34(5):696-699. 被引量:90
  • 3刘丁,刘晓丽,杨延西.基于AGA的ADRC及其应用研究[J].系统仿真学报,2006,18(7):1909-1911. 被引量:22
  • 4[1]Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory. In: Proceedings of Sixth Symposium on Micro Machine and Human Science, Piscataway, NJ: IEEE Service Center, 1995, 39~43 被引量:1
  • 5[2]Coello C A C, Lechunga M S. MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. In: Proceedings of the IEEE World Congress on Computational Intelligence, Hawaii: IEEE Press, 2002 被引量:1
  • 6[3]Zitzler E, Deb K, Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 2000, 8(2): 173~195 被引量:1
  • 7[4]王凌.智能优化计算及其应用.北京:清华大学出版社,2001 被引量:1
  • 8[6]Gerhard Venter, Jaroslaw Sobieszczanski-Sobieski. Particle Swarm Optimization. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado: AIAA 2002- 1235, 2002 被引量:1
  • 9C A Coello Coello.A Comprehensive survey of evolutionary-based multiobjective optimization,techniques.Knowledge and Information Systems,1999,1(3):269~308 被引量:1
  • 10J D Schaffer.Multiple objective optimization with vector evaluated genetic algorithms.The First Int'l Conf on Genetic Algorithms,Lawrence Erlbaum,1985 被引量:1

共引文献306

同被引文献73

引证文献8

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部