期刊文献+

进化规划在Multi-UCAV合作攻击伪装目标中的研究

Research on the Multi-UCAV Cooperation Attacking Hidden and Camouflaged Targets Using Evolutionary Programming Based on Hybrid Probability Distribution
下载PDF
导出
摘要 在多无人作战飞机攻击隐蔽伪装目标的任务调度规划中,针对静态武器分配方法的不足,提出了一种目标可侦测度相关模型(TDRM),该模型体现了UCAV对不同目标的侦测能力与无人作战机群整体射击效率之间的联系。将基于混合概率分布的进化规划(EPBHPD)引入到对隐蔽伪装目标的攻击规划中,能在问题求解的精确性与实时性两者不断变化的战场环境中,通过调整进化规划中变异算子的参数和问题空间与可行解空间的映射关系可以获得合理的折中。仿真结果表明了目标可侦测度相关模型的有效性。 With regard to the disadvantage of the static weapon-target assignment methods used in the hidden and camouflaged targets attacking problem,a kind of Targets' Detectable Relationship Model(TDRM) was proposed.This model can show the relationship between multi-UCAV(Unmanned Combat Air Vehicles) weapon shooting efficiency and targets' detectable possibility.The Evolutionary Programming Based on Hybrid Probability Distribution(EPBHPD) is designed to resolve the hidden and camouflaged targets attacking problem,which can get a good compromise of the desired precision and computation time cost in the battle field environment.Besides,the efficiency of the TDRM is manifested by the preliminary simulation experiments.
作者 董喆 李新广
出处 《火力与指挥控制》 CSCD 北大核心 2011年第1期5-9,共5页 Fire Control & Command Control
基金 国家自然科学基金资助项目(40971243)
关键词 无人作战飞机 协作攻击 目标侦测度 进化规划 混合概率分布 Unmanned Combat Air Vehicles(UCAV) cooperation attacking targets detectable probability evolutionary programming hybrid probability distribution
  • 相关文献

参考文献8

二级参考文献35

  • 1范洁,刘玉树,龚元明,陈云飞.基于混合蚁群算法的WTA问题求解[J].计算机工程与应用,2005,41(10):59-61. 被引量:12
  • 2普霍帕拉塔 F P 沙莫斯 M I 等 庄心谷译.计算几何导论[M].北京: 科学出版社,1992.250-273. 被引量:1
  • 3Maniezzo,Vittorio,Colorni. Ant system applied to the quadratic assignment problem[J].IEEE Transactions on Knowledge and Data Engineering, 1999; 11 (5) :769~778. 被引量:1
  • 4Marco Dorigo,Gianni Di Caro,Luca M Gambardella. Ant Algorithms for Discrete Optimization[J].Massachusetts Institute of Technology Artificial Life, 1999;5:137~172. 被引量:1
  • 5Zne-Jung Lee,Chou-Yuan Lee,Shun-Feng Su. An immunity-based ant colony optimization algorithm for solving weapon-target assignment problem[J].Applied Soft Computing,2002;2:39~47. 被引量:1
  • 6Yao X,Liu Y.A new evolutionary system for evolving artificial neural networks[J].IEEE Tran-sactions on Neural Networks,1997,8(3):694-713. 被引量:1
  • 7Sebald A V,Schlenzig J.Minimax design of neural net controllers for highly uncertain plants[J].IEEE Transactions on Neural Networks,1994,5(1):73-82. 被引量:1
  • 8Bornholdt S,Graundenz D.General asymmet-ric neural networks and structure design by genetic algorithms[J].IEEE Transactions on Neural Networks,1992,5(5):327-334. 被引量:1
  • 9Fogel D B.Applying evolutionary programming to selected traveling salesman problem[J].Cybernetics and System,1993,24(1):27-36. 被引量:1
  • 10Yao X,Liu Y,Lin G.Evolutionary programming made faster[J].IEEE Transactions on Evolutionary Computation,1999,3(2):82-102. 被引量:1

共引文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部