摘要
采用支持向量回归机(SVR)与微分进化策略相结合的方法,对新疆2个地区的月平均忙时话务量进行预测。由微分进化策略良好的全局搜索性质,以预测平均相对误差为目标函数,对SVR的超参数进行寻优,利用优化后的SVR月平均忙时话务量进行预测。与传统的网格寻优算法和RBF神经网络方法进行比较,结果表明,SVR的泛化能力与微分进化策略的搜索能力相结合,可以得到更好的预测效果。
Telephone traffic load of monthly busy hour in two states of Xinjiang are predicted by the method of Support Vector Regression(SVR) combining with Differential Evolution strategy(DE-strategy). The hyper-parameter of SVR is optimized via the DE-strategy and the MAPE criteria is defined as the objective function. Telephone traffic load of monthly busy hour is forecasted by the optimized SVR, the predicted result is compared with the method of grid search and RBF neural network. A better prediction result is obtained by the generalization property of SVR combining with searching property of DE-strategy.
出处
《计算机工程》
CAS
CSCD
北大核心
2011年第2期178-179,182,共3页
Computer Engineering
基金
中国移动新疆分公司研究发展基金资助项目
关键词
微分进化策略
支持向量回归机
话务量预测
Differential Evolution strategy(DE-strategy)
Support Vector Regression(SVR)
telephone traffic load prediction