期刊文献+

ABSOLUTELY E-PURE MODULES AND E-PURE SPLIT MODULES 被引量:2

ABSOLUTELY E-PURE MODULES AND E-PURE SPLIT MODULES
下载PDF
导出
摘要 We first introduce the concepts of absolutely E-pure modules and E-pure split modules. Then, we characterize the IF rings in terms of absolutely E-pure modules. The E-pure split modules are also characterized. We first introduce the concepts of absolutely E-pure modules and E-pure split modules. Then, we characterize the IF rings in terms of absolutely E-pure modules. The E-pure split modules are also characterized.
作者 阎舫宇
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第1期207-220,共14页 数学物理学报(B辑英文版)
基金 supported by SRFDP(20050284015)
关键词 Absolutely E-pure module E-pure split module IF ring copure flat module Absolutely E-pure module E-pure split module IF ring copure flat module
  • 相关文献

参考文献14

  • 1Cohn P M. On the free product of asscociative rings. Math Z, 1959, 71:380-398. 被引量:1
  • 2Fieldhouse D J. Pure Theories. Math Ann, 1969, 184:1-18. 被引量:1
  • 3Maddox B H. Absolutely pure modules. Proc Amer Math Soc, 1967.18:155-158. 被引量:1
  • 4Stenstrom B. Coherent rings and FP-injective modules. J London Math Soc, 1970, 2(2): 323- 329. 被引量:1
  • 5Cheng F C, Tang J Y, Huang Z Y, et al. H-coherent rings and FGT-injective dimnsion. Southeast Asian Bull Math, 1995, 19 (3): 105- 112. 被引量:1
  • 6Enochs E E, Jenda O M G. Copure injective resolutions, flat resolvents and dimensions. Comment Math Univ Carolin, 1993, 34(2): 203-211. 被引量:1
  • 7Azumaya G, Facchini A. Rings of pure global dimension zero and Mittag-Lettter modules. J Pure Appl Algebra, 1989. 62:109-122. 被引量:1
  • 8Anderson F W, Puller K R. Rings and Categories of Modules. New York: Springer-Verlag, 1974. 被引量:1
  • 9Enochs E E, Jenda O M G. Relative Homological Algebra//de Gruyter Exposition in Mathematics, 30. Berlin: Walter de Gruyter & Co, 2000. 被引量:1
  • 10Rotman J J. An Introduction to Homological Algebra. New York: Academic Press, 1979. 被引量:1

同被引文献13

  • 1ANDERSON F W, FULLER K R. Rings and Categories of Modules [M]. New York, Springer- Verlag, 1974. 被引量:1
  • 2COHN P M. On the product of assciative rings[J]. MathZ, 1959, 71: 380-398. 被引量:1
  • 3ENOCHS E E, JENDA O M G. Copure injeetive resolutions, flat resolvents and dimensions [J ]. Comment Math Univ Carolin , 1993, 34(1): 203- 211. 被引量:1
  • 4ENOCHS E E, JENDA O M G. Relative Homological Algebra[M]. de Gruyter Exposition in Math 30. Berlin: Walter de Gruyter and Co, 2000. 被引量:1
  • 5GOBEL R, TRLIFAJ Endomorphism Algebras J. Approximations and of Modules [M]. de Gruyter Exposition in Mathematics 41. Berlin Walter de Gruyter and Co, 2006.- 29-116. 被引量:1
  • 6PUNINSKI G, ROTHMALER P. When every finitely generated flat module is projective [J]. J Algebra, 2004, 277 542-558. 被引量:1
  • 7ROTMAN J J. An Introduction to Homological Algebra[M]. New York: Academic Press, 1970. 被引量:1
  • 8STENSTROM B. Coherent rings and FP-injective modules[J]. J London Math Soc, 1970, 2 (2): 323-329. 被引量:1
  • 9COLBY R R. Rings which have flat injective modules[J]. J Algebra, 1975, 35.- 239-252. 被引量:1
  • 10王芳贵.有限表现型模与w-凝聚环(英文)[J].四川师范大学学报(自然科学版),2010,33(1):1-9. 被引量:24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部