期刊文献+

基于改进粒子群优化的模糊熵煤尘图像分割 被引量:4

Coal dust image segmentation based on improved particle swarm optimization and fuzzy entropy
原文传递
导出
摘要 针对基本粒子群算法易陷入局部最优和过早收敛的缺陷,提出权重因子自适应的粒子群算法,并对部分粒子进行Morlet变异操作,由此得到改进粒子群优化算法.将该算法和模糊熵相结合并用于图像分割,利用改进粒子群优化算法来搜索使模糊熵最大的参数值,得到模糊参数的最优组合,进而确定图像的分割阈值.通过与其他两种粒子群算法的分割结果进行比较,该算法取得了令人满意的分割结果,且算法运算时间较小,满足煤尘浓度实时精确测量的要求. Basic particle swarm optimization(PSO) can not get good optimization performance,because it is easy to get stuck into local optima.Therefore,an algorithm named improved PSO which combines proposed inertia adaptive PSO with partial particles Morlet mutation is proposed.The proposed algorithm and fuzzy entropy are applied to image segmentation,and improved PSO is used to explore fuzzy parameters of maximum fuzzy entropy,which gets the optimum fuzzy parameter combination,then obtains the segmentation threshold.By comparing the proposed algorithm with other two algorithms,the experiment results show that the proposed algorithm has the capability of good segmentation performance and low time cost,which can be use to real time and precision measure coal dust image.
作者 张伟 隋青美
出处 《控制与决策》 EI CSCD 北大核心 2011年第2期276-279,284,共5页 Control and Decision
基金 山东省自然科学基金项目(Z2006G06)
关键词 粒子群 Morlet变异 权重因子自适应 模糊熵 图像分割 particle swarm optimization Morlet mutation inertia adaptive fuzzy entropy image segmentation
  • 相关文献

参考文献16

  • 1Murthy C A, Pal S K. Histogram thresholding by minimizing graylevel fuzziness[J]. Information Sciences, 1992, 60(2): 107-135. 被引量:1
  • 2Zhao B, Guo C X, Cao Y J. A multiagent-based particle swarm optimization approach for optimal reactive power dispatch[J]. IEEE Trans Power System, 2005, 20(2): 1070- 1078. 被引量:1
  • 3Ting T O, Rao M V C, Loo C K. A novel approach for unit commitment problem via an effective hybrid particle swarm optimization[J]. IEEE Trans Power System, 2006, 21(1): 411-418. 被引量:1
  • 4Leandro dos, Santos Coelho, Bruno M H. Fuzzy identification based on a chaotic particle swarm optimizatioh approach applied to a nonlinear yo-yo motion system[J]. IEEE Trans Industrial Electronics, 2007, 54(6): 3234-3245. 被引量:1
  • 5Wu Jiekang, Zhu Jianquan, Chen Guotong, et al. A hybrid method for optimal scheduling of short-term electric power generation of cascaded hydroelectric plants based on particle swarm optimization and chance-constrained programming[J]. IEEE Trans on Power Systems, 2008, 23(4): 1570-1579. 被引量:1
  • 6Lin Cheng-Hung Chen, Chin-Teng Lin. A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications[J]. IEEE Trans on System, Man, Cybernetics, 2009, 39(1): 55-68. 被引量:1
  • 7Yang X, Yuan J, Yuan J, et al. A modified particle swarm optimizer with dynamic adaptation[J]. Applied Mathematics and Computation, 2007, 189(2): 1205-1213. 被引量:1
  • 8Tripathi P K, Bandyopadhyay S, Pal S K. Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients[J]. Information Sciences, 2007, 177(22): 5033-5049. 被引量:1
  • 9Arumugam M S, Rao M V C. On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square(RMS) variants for computing optimal control of a class of hybrid systems[J]. Applied Soft Computing, 2008, 8(1): 324-336. 被引量:1
  • 10Jiao B, Lian Z, Gu X. A dynamic inertia weight particle swarm optimization algorithm[J]. Chaos, Solitons and Fractals, 2008, 37(3): 698-705. 被引量:1

二级参考文献4

共引文献28

同被引文献52

  • 1SUN Hui, LI Jun, WEN Lili, et al. A hybird particle swarm optimization for wireless sensor network coverage problem [J]. Sensor Letters, 2012, 10 (8): 1744-1750. 被引量:1
  • 2WANG Hui, WU Zhijian, S Rahnamayan, et al. Enhandng particle swarm optimization using generalized opposition-based learning [J]. Irdormation Sciences, 2011, 181 (20): 4699-4714. 被引量:1
  • 3唐英干,刘冬,关新平.基于粒子群和二维Otsu方法的快速图像分割[J].控制与决策,2007,22(2):202-205. 被引量:25
  • 4KENNEDY J,EBERHART R. Particle swarm optimization[A].Piscataway,NJ:IEEE Press,1995.1942-1948. 被引量:1
  • 5EBERHART R,KENNEDY J. A new optimizer using particle swarm theory[A].Piscataway,N J:IEEE Press,1995.39-43. 被引量:1
  • 6van DEN BERGH F. An analysis of particle swarm optimizers[D].Pretoria,South Africa:University of Pretoria,2001. 被引量:1
  • 7SHI Y,EBERHART R C. A modified particle swarm optimizer[A].Piscataway,NJ:IEEE Press,1998.69-73. 被引量:1
  • 8CLERC M,KENNEDY J. The particle swarm-explosion,stability and convergence in a multidimensional complex space[J].{H}IEEE Transactions on Evolutionary Computation,2002,(01):58-73. 被引量:1
  • 9MENDES R,KENNEDY J,NEVES J. The fully informed particle swarm:simpler,maybe better[J].{H}IEEE Transactions on Evolutionary Computation,2004,(03):204-210. 被引量:1
  • 10RATNAWEERA A,HALGAMUGE S,WATSON H. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].{H}IEEE Transactions on Evolutionary Computation,2004,(03):240-255. 被引量:1

引证文献4

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部