期刊文献+

基于主成分分析的多源特征融合故障诊断方法 被引量:6

Feature-level Fusion Fault Diagnosis Based on PCA
下载PDF
导出
摘要 目前故障诊断的实际应用中,因噪声的干扰,基于单传感器的故障诊断稳定性较差,很难达到满意的诊断精确度。提出了一种多传感器多特征数据融合的故障诊断方法。该方法利用多传感器从不同部位获取同一部件的运行状况,并通过构建多源特征融合模型,提高特征信息的抗干扰性,最后通过融合特征信息来完成部件的故障诊断。在将新方法应用于滚动轴承故障诊断的试验中,可以看到新方法能够获得较好的性能,比基于单传感器故障诊断的精确度更高。 In most of current application,fault diagnosis based on single sensor show bad performance and is difficult to achieve satisfactory accuracy owning to noises.In this paper,a multi-sensor multi-feature fusion fault diagnosis method was proposed.The method firstly collects part operating conditions using multiple sensors installed on it.Then a fusion model based on principal component analysis was constructed to fuse all extracted features from the different sensors.Finally,fault diagnosis was carried out according to the fused results.Experiments and results show that new method can achieve perfect performance which is also better than that achieved by single-sensor.
出处 《计算机科学》 CSCD 北大核心 2011年第1期268-270,共3页 Computer Science
基金 重庆自然科学基金项目(2008BB2065) 重庆理工大学青年基金项目(2010ZQ21)资助
关键词 多源信息融合 故障诊断 主成分分析 特征级 分类 Feature fusion Fault diagnosis PCA Character level Classifier
  • 相关文献

参考文献8

  • 1Widodo A, Yang B S, Han T. Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors[J]. Expert Systems with Applications, 2007,32(2) : 239-312. 被引量:1
  • 2Lei Ya-guo, He Zheng-jia, Zi Yan-Yang. A new approach to intelligent fault diagnosis of rotating machinery[J].Expert Systems with Applications, 2008,35 (4) :1593-1600. 被引量:1
  • 3Niu Gang, Yang Bo-suk. Intelligent condition monitoring and prognostics system based on data-fusion strategy[J].Expert Systems with Application, 2010,37 (12): 8831-8840. 被引量:1
  • 4Shlens J. A Tutorial on Principal Component Analysis[R]. CA 92037. Systems Neurobiology Laboratory,Salk Insitute for Biological Studies, La Jolla, April 2009. 被引量:1
  • 5Scholkopf B, Smola A. Learning with Kernel: Support Vector Machines,Regularization, Optimization and Beyond[M]. London: MIT Press, 2002. 被引量:1
  • 6Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [J].Neural Computation, 1998,10(5) : 1299-1319. 被引量:1
  • 7Gao Qing-bin, Wang Zheng-zhi. Center-based nearest neighbor classifier[J]. Pattern Recognition, 2007,40(1):346-349. 被引量:1
  • 8http://www. eccs. case. edu/iaboratory/bearing/download.htm.2010. 被引量:1

同被引文献53

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部