期刊文献+

一种适应数据与计算密集型任务的私有云系统实现研究 被引量:18

Private cloud computing system realization method adaptable to data and computing intensive tasks
下载PDF
导出
摘要 与公有云计算相比,针对数据与计算双重密集型任务的私有云计算系统对计算效率和系统管理效率提出了更高的要求,目前的公有云计算系统显得过于复杂和繁琐,因此需要一种简便易用的能够适应数据与计算密集型任务的私有云计算系统实现。借鉴公有云计算的相关理论和实现方法,提出了一种针对数据与计算双重密集型任务的私有云计算系统实现方案。该方案通过作业文件描述用户的计算任务,确定计算任务的计算模型和计算的输入输出文件;针对私有云的特点,简化Google云计算系统的MapReduce并行处理框架,得到更加直观的数据计算模型;自动连接计算数据流,使该方案更加精简和适应处理数据与计算双重密集型任务。实验结果表明:该方案能够减少额外的计算消耗,处理速度能得到显著提升,有很高的实用性。 Compared with public cloud computing systems,private cloud computing systems aiming at data and computing dual intensive tasks have higher demand in computing and management efficiency.The realization methods for public cloud computing system are too complicated for users to develop.A simplify and easy to use realization of private cloud computing system is requirement.To meet this requirement,this paper proposed an approach to build a private cloud computing system which was able to adapt both data and computing intensive tasks on basis of public cloud computing systems implementation.This approach used job files with aim of describing computing tasks and determined the input and output files of computing model.Computing model of data processing could be reflected more intuitively by simplify the Google MapReduce parallel computing framework;the use of connecting computing flow automatically made the approach more streamline and rapidly to process intensive tasks.Experiment results shows that this approach can reduce extra computation overhead and improve processing efficiency significantly.This approach offers a high practical value.
出处 《计算机应用研究》 CSCD 北大核心 2011年第2期621-624,共4页 Application Research of Computers
基金 国家自然科学基金重点资助项目(40839905) 现代通信国家重点实验室基金资助项目(9140C1104040904)
关键词 数据与计算双重密集型任务 私有云 云计算 并行计算 data and computing intensive task private cloud cloud computing parallel computing
  • 相关文献

参考文献10

  • 1ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: a Berkeley view of cloud computing, Technical Report UCB/EECS-2009-28[R].2009. 被引量:1
  • 2EVANGLINOS C, CHRIS N H. Cloud computing for parallel scienti-fic HPC applications: feasibility of running coupled atmosphere-ocean climate models on Amazon’s EC2[C]//Proc of CCA’08.2008. 被引量:1
  • 3LUIS M V, LUIS R M, CACERES J, et al. A break in the clouds: towards a cloud definition[J].ACM SIGCOMM Computer Communication Review,2009,39(1):50-55. 被引量:1
  • 4陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. 被引量:1311
  • 5Sun Microsystems Inc. Introduction to cloud computing architecture white paper[K].2009. 被引量:1
  • 6吴朱华.从技术角度解剖云计算架构[EB/OL].(2010).http://www.infoq.com/cn/articles/analyze-cloud-architecture. 被引量:1
  • 7DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters[C]//Proc of the 5th USENIX Symposium on Operating Systems Design and Implementation.2004:137-150. 被引量:1
  • 8CitrixSystemsInc.XEN[EB/OL].(2010).http://www.xen.org/. 被引量:1
  • 9SANJAY G, HOWARD G, SHUN T L. The Google file system[C]//Proc of the 17th ACM Symposium on Operating Systems Principles.2003:29-43. 被引量:1
  • 10CHANG F, DEAN J, GHEMAWAT S, et al. Bigtable: a distributed storage system for structured data[C]//Proc of OSDI ’06. 2006:205-218. 被引量:1

二级参考文献29

  • 1Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss 被引量:1
  • 2Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf 被引量:1
  • 3Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403. 被引量:1
  • 4Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11. 被引量:1
  • 5Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28. 被引量:1
  • 6Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117. 被引量:1
  • 7Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43. 被引量:1
  • 8Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150. 被引量:1
  • 9Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350. 被引量:1
  • 10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 205-218. 被引量:1

共引文献1310

同被引文献117

引证文献18

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部