期刊文献+

用模糊神经网络进行铣刀磨损状态识别

Cutter wear state recongnition base on feature selection and fuzzy neural network
下载PDF
导出
摘要 刀具磨损监测过程是一个模式识别过程,模糊推理和人工神经网络都是进行模式识别非常有效的办法,针对模糊系统和神经网络各自表现出来的不足,将模糊推理和神经网络结合起来,充分利用模糊系统在处理结构性知识上的优势和神经网络在自学习和并行处理上的能力,形成模糊神经网络进行刀具磨损在线监测识别。通过研究模糊系统和神经网络的结合形势,选择模糊系统增强的神经网络进行识别计算,同时建立隶属函数对刀具磨损过程进行模糊划分,最后通过实验进行识别测试。 Tool wear monitoring process is a pattern recognition process, Fuzzy reasoning and neural networks are very effective to pattern recognition, because of shortcoming of fuzzy system and neural networks, this paper makes full use of fuzzy system which is advantage to deal with structure knowledge and neural networks that is good at self-learning and parallel processing to form fuzzy neural networks to monitor tool wear.By studying the situation of combination of fuzzy system and neural networks, this paper selects the neural networks enhanced by fuzzy system to recognise tool wear, and divide tool wear process by membership function at the same time, and finally recognise tool wear by experiment.
作者 陈勇
出处 《机械》 2011年第1期22-25,73,共5页 Machinery
关键词 刀具磨损 在线监测 模糊神经网络 tool wear online monitor fuzzy neural networks
  • 相关文献

参考文献8

  • 1Y. K. Koren, Tsu-Ren, Galip Ulsoy, A; Danai, Kourosh Flank wear estimation under varying cutting conditions[J] Journal of Dynamic Systems, Measurement and Control, Transactions oftheASME, 1991, 113 ( 2 ): 300-307. 被引量:1
  • 2I. N. Tansel and C. McLaughlin. Detection of tool breakage in milling operations-1. The time series analysis approach [J] International Journal of Machine Tools and Manufacture, 1993, 33 (4): 531-544. 被引量:1
  • 3谭文著..混沌系统的模糊神经网络控制理论与方法[M].北京:科学出版社,2008:236.
  • 4Y. S. Tarng and B. Y. Lee. Use of model-based cutting simulation system for tool breakage monitoring in milling[J]. International Journal of Machine Tools and Manufacture, 1992, 32 (5): 641-649. 被引量:1
  • 5高宏力..切削加工过程中刀具磨损的智能监测技术研究[D].西南交通大学,2005:
  • 6杨纶标,高英仪.模糊数学原理与应用[M].广州:华南理工大学出版社,2005.41-48. 被引量:7
  • 7孙荣斌,王鑫,夏加宽.基于模糊神经网络的磁浮车悬浮控制器[J].机电工程,2008,25(1):86-88. 被引量:3
  • 8郭天龄,徐创文.基于人工神经网络的铣削磨损监测研究[J].机械研究与应用,2007,20(6):53-55. 被引量:1

二级参考文献8

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部