期刊文献+

巴拿哈空间中随机年龄结构种群方程的数值分析(英文)

Numerical Analysis of Stochastic Age-structured Population Equations in Banach Spaces
下载PDF
导出
摘要 本文研究年龄结构随机种群方程的离散误差,在空间离散中用到Galerkin公式,时间离散中用到显式欧拉公式. In this paper,we investigate the discretization error of stochastic age-structured population equations in Baaach spaces, The spaces discretization may be done by Galerkin approximation, for the time discretization we consider the explicit Euler scheme.
出处 《应用数学》 CSCD 北大核心 2011年第1期56-65,共10页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11061024)
关键词 随机年龄结构种群方程 随机微分方程 数值近似 Stochastic age-structured population equations Stochastic differential equation Numerical approximation
  • 相关文献

参考文献11

  • 1ZHANG Qimin, HAN Chongzhao. Existence and uniqueness for a stochastic age-structured population system with diffusion[J ]. Applied Mathematical Medelling, 2008,32: 2197-2206. 被引量:1
  • 2ZHANG Qimin, LIU Wenan, NIE Zankan. Existence, uniqueness and exponential stability of stochastic age-dependent population[J]. Appl. Math. Comput,2004,154 : 183-201. 被引量:1
  • 3LI Ronghua, LEUNG Pingkei, PANG Wankai. Convergence of numerical solution to stochastic age-dependent population equations with Markovian switching[J]. Apph Math. Comput,2009,233: 1046-1055. 被引量:1
  • 4HAUSENBLAS E. Numerical analysis of semilinear stochastic evolution equations in Banach spaces[J]. Appl. Math. Comput. , 2002,147 : 485-516. 被引量:1
  • 5ZHANG Qimin. Exponential stability of numerical solutions to a stochastic age-dependent population sys- tem with diffusion[J]. Appl. Math. Comput. , 2008,220 : 22-33. 被引量:1
  • 6PANG Wankai, LI Ronghua, LIU Min. Convergence of the semi-implicit Euler method for stochastic agedependent population equations[J]. Appl. Math. Comput. , 2008,195: 466-474. 被引量:1
  • 7BRZEZNIAK Z. Stochastic partial differential equations in M-type 2 Banach spaces[J]. Potential Anal. , 1995,4:1-45. 被引量:1
  • 8DETTWEILER E. On the martingale problem for Banach space valued stochastic differential equations [J]. Theoret. Probab. , 1989,2(2) :159-191. 被引量:1
  • 9HAUSENBLAS E. Approximation for semilinear stochastic evolution equations[J]. Potential Anal., 2003,18 : 141-186. 被引量:1
  • 10LUNARDI A. Interpolation Theory[M]. [S. l.] :Scuola Normale Superiore Pisa-Appunti, 1999. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部