期刊文献+

一种多层次选择性集成学习算法 被引量:1

A MULTI-LEVEL SELECTIVE ENSEMBLE LEARNING ALGORITHM
下载PDF
导出
摘要 选择性集成学习是为解决同一个问题而训练多个基分类器,并依据某种规则选取部分基分类器的结果进行整合的学习算法。通过选择性集成可以获得比单个学习器和全部集成学习更好的学习效果,可以显著地提高学习系统的泛化性能。提出了一种多层次选择性集成学习算法Ada_ens。试验结果表明,Ada_ens具有更好的学习效果和泛化性能。 Selective ensemble learning is a learning algorithm,which trains a number of base classifiers and selects part of their outcomes according to a certain rule to assemble.With the selective ensemble,this algorithm would achieve better learning effect than the single classifier and the entire ensemble learning.The algorithm can also remarkably improve the generalisation property of the learning system.In this paper,we propose a multi-level selective ensemble learning algorithm,Ada_ens.Test results show that Ada_ens has better learning results and higher ability to generalize.
出处 《计算机应用与软件》 CSCD 2011年第1期16-18,共3页 Computer Applications and Software
基金 国家自然科学基金项目(60473142)
关键词 机器学习 集成学习 选择性集成 Machine learning Ensemble learning Selective ensemble
  • 相关文献

参考文献7

  • 1Hansen L K,Salamon P. Neural network ensembles. IEEE Transactions on Patte-aa Analysis and Machine Intelligence, 1990, 12 ( 10 ) : 993 - 1001. 被引量:1
  • 2Zhou Z H,Wu J,Tang W. Ensembling neural networks:many could be better than all. Artificial Intelligence, 2002,137 ( 1 - 2 ) : 239 - 263. 被引量:1
  • 3Dietterich T G. Ensemble methodz in machine learning [ C ]//Proceedings of the Firstlnternational Workshop on Multiple Classifier Systems, Cagliari, Italy ,2000,1 - 15. 被引量:1
  • 4Ian H Witten,Eibe Frank.数据挖掘实用机器学习技术[M].董琳,邱泉,于晓峰,等译.北京:机械工业出版社,2006. 被引量:5
  • 5Quinlan J R. C4.5 : Programs for Machine Learning [ C ]. CA : Morgan Kaufmann, 1993. 被引量:1
  • 6Freund Y, Schapire R E. Adecision-theoretic generaliation of on-line learning and an application to boosting. Journal of Computer and System Sciences, 1997,55 ( 1 ) : 119 - 139. 被引量:1
  • 7Breiman L. Bagging predictors. Machine Learning, 1996,24 (2) : 123 - 140. 被引量:1

共引文献4

同被引文献15

  • 1张沧生,崔丽娟,杨刚,倪志宏.集成学习算法的比较研究[J].河北大学学报(自然科学版),2007,27(5):551-554. 被引量:6
  • 2Merler S, Caprile B, Furlanello C. Parallelizing AdaBoost by weights dynamics [J]. Computational Statistics & Data Analysis, 2007, 51 (5): 2487-2498. 被引量:1
  • 3Zhang CX, Zhang JS. A local boosting algorithm for solving classification problems[J]. Computational Statistics & Data Analysis, 2008, 52 (4): 1928-1941. 被引量:1
  • 4Nishikawa T, Abe S. Maximizing margins of multilayer neural networks [C]//Singapore: Proceedings of the 9th International Conference on Neural Information Processing, 2002. 被引量:1
  • 5Chang Chihchung, Lin Chihjen. LIBSVM: A library for support vector machines [J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2 (3): 27. Software available at http: //www. csie. ntu. edu. tw/-cjlin/libsvm. 被引量:1
  • 6Fan RE, Chang KW, Hsieh CJ, et al. LIBLINEAR: A library for large linear classification [J]. Journal of Machine Learning Research, 2008 (9): 1871-1874. 被引量:1
  • 7Weston J, Schoolkopf B, Eskin E, et al. Dealing with large diagonals in kernel matrices EG]. Lecture Notes in Computer Science 243: Principles of Data Mining and Knowledge Disco- very, Springer, 2002. 被引量:1
  • 8Lean Yu. Support vector machine based multiagent ensemble learning for credit risk evaluation [J]. Expert Systems with Application, 2010, 37 (2): 1351-1360. 被引量:1
  • 9Ke Tang, Minlong Lin, Fernanda L Minku, et al. Selective negative correlation learning approach to incremental learning [J]. Neurocomputing, 2009, 72 (13/15): 3077-3084. 被引量:1
  • 10GAO Yang, HUANG Zhexue, WU Lei, et al. Learning classifier system ensemble and compact rule set [J]. Connection Science, 2007, 19 (4): 321-337. DOI: 10. 1080/09540090701725466. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部