期刊文献+

基于小波变换和时域波形的基音检测算法 被引量:4

Pitch Detection Algorithm Based on Wavelet Transform and Waveform in Time Domain
下载PDF
导出
摘要 为了准确地检测语音信号的基音周期,采用小波变换和时域波形相结合的方法,分别用传统的自相关法、平均幅度差法及文中算法对纯净语音和不同信噪比时的含噪语音进行基音检测。实验表明,自相关法易出现半频错误,平均幅度差法易出现倍频错误,且两者随着信噪比的降低,错误帧数呈增加趋势。然而文中算法倍频、半频错误相对较少,基音轮廓清晰、平滑,无大的跳变,符合语音信号慢时变性的一般规律,从而提高了基音检测的精度。 An algorithm is proposed on the basis of wavelet transform arid waveform in time domain to improve the accuracy of pitch detection. The pitch period of clear speech and noisy speech indifferent signal-to-noise ratio is detected by using the proposed method and the traditional methods of autocorrelation function and average magnitude difference function. The experiments show that the half frequency errors may occur in the method of autocorrelation function and double frequency errors may occur in the method of average magnitude difference function. Furthermore, the error frames of the two methods increase with the decrease of signal-to-noise ratio. In the proposed algorithm, there are relatively few double and half frequency errors, and the pitch contour is clear and smooth without big jump. The results are coincident with the common rule as the slow variation with time of speech signal. Therefpre, the accuracy of pitch detection can be improved effectively by the algorithm.
出处 《现代电子技术》 2011年第1期77-79,共3页 Modern Electronics Technique
基金 河南省自然科学基金资助项目(0411010100)
关键词 基音检测 小波变换 自相关法 平均幅度差法 pitch detection wavelet transform autocorrelation method average magnitude difference method
  • 相关文献

参考文献10

二级参考文献9

  • 1韦岗 欧阳景正.一种基于时域波形匹配的基音估计算法.第三届全国信号处理学术会议论文集[M].信号处理学会,1988.. 被引量:1
  • 2李炳照 许天周.框架理论与小波分析在语音信号处理中的应用,北京理工大学硕士学位论文[M].,2001.. 被引量:1
  • 3R W Schafer,L R Rabiner.System for Automatic Formant Analysis of Voiced speech J A S A ,1970;47(2):634~648. 被引量:1
  • 4M M Sondhi.New Methods of Htch Extraction.IEEE Trans.AU,1968;16(1):262—266. 被引量:1
  • 5陈永彬.语音信号处理[M].上海:上海交通大学出版社,1991.45-53. 被引量:4
  • 6Saito T,et al.Pro TALKER: A Japanese Text-to-Speech System for Personal Computers[].IBM Research Report.1995 被引量:1
  • 7Kobayashi M,Sakamoto M et al.Wavelet analysis for text to speech systems[]..1996 被引量:1
  • 8Deng,D.-g.,Peng,L.-zhong.Wavelet analysis[].Mathematical Progress.1991 被引量:1
  • 9M.Misiti,Y.Misiti,G.Oppenheim,et al.MATLAB Wavelet Toolbox User’s Guide (Version 1) The MathWorks[]..1997 被引量:1

共引文献58

同被引文献23

  • 1王秀君,和应民.基于语音合成法的汉语人名语音库的设计应用[J].应用科技,2006,33(3):10-12. 被引量:1
  • 2李飞,覃爱娜,赖旭芝.过渡音的基音周期检测方法[J].中南大学学报(自然科学版),2006,37(4):786-789. 被引量:1
  • 3Flandrin P,Rilling G,Goncalves P.Empirical mode decomposition as a filter bank[J] .IEEE Signal Processing Letters,2004,11(2):112-114. 被引量:1
  • 4Donoho D L.De-noising by soft-thresholding[J] .IEEETransaction on Information Theory,1995,41(3):613-627. 被引量:1
  • 5T. Yoo, A. Goldsmith, On the Optimality of Multiantanna Broadcast Scheduling Using Zero-Forcing Beamforming, IEEE J. Select. Areas Commun., vol. 24, no. 3, pp. 528-540, Mar. 2006. 被引量:1
  • 6T. Yoo, N. Jindal, A. Goldsmith, Multi-Antenna Downlink Channels with Limited Feedback and User Selection, IEEE J. Select. Areas Commnn., vol. 25, no. 7, pp. 1478-1491, Sep. 2007. 被引量:1
  • 7D. Love, An overview of Limited Feedback in Wireless Communication Systems, IEEE J. Select. Areas Commun.,vol. 26, no. 8, pp. 1341-1365, Oct. 2008. 被引量:1
  • 8Joham M., MMSE approaches to multiuser spatio-temporal Tomlinson-Harashima precoding. In Proc. 5th ITG Conf. Source and channel coding, Erlangen, Germany, 2004: 387-394. 被引量:1
  • 9张瑞,宋荣方.网络MIMO中的基站联合传输技术[J].2011,27(3):456-460. 被引量:1
  • 10M. Costa, Writing on dirty paper, IEEE Transactions on Information Theory, vol.29,no.3, pp.439-441, May 1983. 被引量:1

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部