期刊文献+

统一混沌同步系统的高阶滑模控制研究 被引量:5

A Study on Synchronization of High-order Sliding Mode Control of Unified Chaotic Systems
下载PDF
导出
摘要 研究了一类具有匹配不确定性和外部扰动的统一混沌系统。通过对误差系统进行滑模变结构控制,实现了统一混沌系统的同步,并且利用滑模控制的特点,保证了同步系统的鲁棒性。当使用传统的趋近律方式的控制率时,系统往往会产生高频抖振,控制器在实际应用中得不到良好的效果。针对这一问题,利用高阶滑模的控制率,在保证系统鲁棒性的基础上,有效地削弱了系统的抖振。通过分别对Lorenz系统和Chen系统进行仿真,验证了该策略能够实现具有外部干扰的匹配不确定统一混沌系统的同步,说明了该种控制策略的有效性与可行性。 The synchronization of two uncertain unified chaotic systems with external disturbance has been investigated by using sliding mode control.Because the chattering will be occurred by using traditional reaching law of sliding mode,high-order sliding mode control law is presented to eliminate the chattering phenomenon.The novel approach not only guaranteed the robustness of system,but also eliminated the chattering of error system.The simulations of Lorenz system and Chen system are given to demonstrate the feasibility and effectiveness of this control strategy.
作者 唐春晖
出处 《控制工程》 CSCD 北大核心 2011年第1期51-53,141,共4页 Control Engineering of China
基金 上海市教育委员会重点学科建设项目(J50505) 上海理工大学光电学院教师创新基金建设项目(GDCX-Y1102)
关键词 统一混沌系统 同步 高阶滑模 鲁棒性 抖振 unified chaotic system synchronization high-order sliding mode control robustness chattering
  • 相关文献

参考文献9

二级参考文献18

  • 1胡刚 萧井华 等.混沌控制[M].上海:上海科技教育出版社,2000.. 被引量:4
  • 2Jiang G P, Zheng W X. An LMI criterion for linearstate-feedback based chaos synchronization of a class of chaotic systems [J]. Chaos, Solitons and Fractals, 2005, 26: 50-55. 被引量:1
  • 3Shahram Etemadi, Aria Alasty, Hassan Salarieh. Synchronization of chaotic systems with uncertainties via variable structure control chaos[J]. Physics Letters, 2006, 357: 17-21. 被引量:1
  • 4Jamal M Nazzal, Ammar N Natsheh. Chaos control using active sliding mode theory[J]. Chaos, Solitons and Fractals, 2007, 33: 695-702. 被引量:1
  • 5Mohammad Haeri, Mohammad Saleh Tavazoei, Majid Reza Naseh. Synchronization of uncertain chaotic systems using active sliding mode control[J]. Chaos, Solitons and Fractals, 2007, 3: 1230-1239. 被引量:1
  • 6Xiao Jiang-wen, Yu Yi. Coupled-adaptive synchronization for Chen chaotic systems with different parameters[J]. Chaos, Solitons and Fractals, 2007, 33: 908-913. 被引量:1
  • 7Ju H Park. Chaos synchronization between two different chaotic dynamical systems [J]. Chaos, Solitons and Fractals, 2006, 27: 549-554. 被引量:1
  • 8GRASSI G, MASCOLO S. Nonlinear observer design to synchronize hypechaotic systems via a scalar signal[J]. IEEE Transactions on Circuits and Systems, 1997, 44(10): 1101 - 1104. 被引量:1
  • 9YANG S X. On observability of 3D continuous-time autonomous chaotic systems based on scalar output measurement[J]. International Journal of Bifurcation and Chaos, 2002, 12(5): 1159 - 1162. 被引量:1
  • 10LU J H, CHEN G R, CHENG D Z, et al. Bridge the gap between the Lorenz system and the Chen system[J]. International Journal of Bifurcation and Chaos, 2002, 12(12): 2917 - 2926. 被引量:1

共引文献103

同被引文献61

  • 1薛云灿,沈继东,杨启文,岳兴汉.混沌变异粒子群优化算法及其应用研究[J].控制工程,2010,17(4):527-531. 被引量:3
  • 2郑雪梅,李琳,徐殿国.双馈风力发电系统低电压过渡的高阶滑模控制仿真研究[J].中国电机工程学报,2009,29(S1):178-183. 被引量:19
  • 3刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418. 被引量:564
  • 4Willsey M S, Cuomo K M, and Oppenheim A V. Quasi-orthogonal wideband radar waveforms based on chaotic systems [ J ]. IEEE Transactions on Aerospace and Electronic Systems,2011,47 (3): 1974-1984. 被引量:1
  • 5Yunkai D, Yinghui H and Xupu G. Hyper chaotic logistic phase coded signal and its sidelobe suppression [ J ]. IEEE Trans. on AES ,2010,46 (2) :672-686. 被引量:1
  • 6Liu J, Qiu S, Xiang F, Xiao H. A cryptosystem based on multiple chaotic maps[ C ]. Japan :International Symposiums on Information Processing, 2008. 被引量:1
  • 7Hu W, Liu Z, Li C. Synchronization-based scheme for calculating ambiguity functions of wideband chaotic signals[ J]. IEEE Trans. on Aero. and Elec. Sys. , 2008, 44 ( 1 ) : 367-372. 被引量:1
  • 8Alonge F,Branciforte M and Motta F. A novel method of distance measurement based on pulse position modu.lation and synchroniza- tion [ J ]. IEEE Trans. on Instrumentation and Measurement,2009, 58(2) :318-329. 被引量:1
  • 9Chao S,Pengfci L and Jian M. fhe chaotic behavior of the chaos- based phase-coded pulse train si:nal [ C ]. American : International Conference on Signal Acquisition and Processing,2010. 被引量:1
  • 10Willsey M S, Cuomo K M and Oppenheim A V. Quasi-orthogonal wideband radar waveforms based on chaotic systems [ J ]. IEEE Transaction on Aerospace and ELectronic Systems,2011,47 (3): 1974-1984. 被引量:1

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部