期刊文献+

基于不变矩和SVM分类的三维目标识别方法 被引量:11

Multi-view 3-D Target Recognition Algorithm Based on Moment Invariant and Support Vector Machine Classification
下载PDF
导出
摘要 在计算机视觉问题的研究中,针对三维目标识别,可综合应用图像的不变矩特征和支持向量机分类方法,为快速目标识别,减少计算量,提出了一种红外图像中多视点目标的识别方法。首先获取各类三维目标的若干二维视图,将视图放在一起进行标准化处理并提取它们的不变特征矩。然后对每组视图的Zernike矩进行聚类;将聚类中心对应的Zernike矩作为此类飞机的特征矩,就完成了三维目特性视图的选取。识别过程中,针对实际要识别的目标,提取它的特征矩并应用支持向量机的方法进行多目标分类。测试结果表明,提出的方法较好地实现了红外图像中多角度目标的识别准确性,与传统的三维目标识别算法相比,计算量较小,是一种有效的自动目标识别算法。 Synthetically utilizing image invariant moments feature and SVM (Support Vector Machine)classifica- tion method, a novel recognition algorithm was proposed to deal with multi-view target in infrared images. Firstly, many 2-D viewers of every kind of target are acquired. Putting all these views together, we normalize every view' s transformation and moment. Then clustering the Zemike moment of every kind into several classes. Taking the Zemi- ke moment responding the center of these classes as the feature-moment of certain kind of plane, we have extracted the 3-D Target feature-views. When real-time target arrives,its features are extracted and pair-wise SVM classifier was used to realize the multi-target classification. A large number of recognition tests on multi-view targets in infrared images prove the validity and reliability of the scheme in this paper.
出处 《计算机仿真》 CSCD 北大核心 2011年第1期242-245,共4页 Computer Simulation
基金 航空科学基金(04I53067)
关键词 多角度三维目标识别 支持向量机 特征提取 Multi-view 3-D target in infrared images Support vector machine(SVM) Features extraction
  • 相关文献

参考文献7

二级参考文献21

  • 1Hu M K. Visual pattern recognition by moment invariant [J]. IRE. Trans on Inf. Theory,1962,3 (4) :179 - 187. 被引量:1
  • 2Li Y. Reforming the theory of invariant moments for pattern recognition [ J ]. Pattern Recognition, 1992, 25: 723 - 730. 被引量:1
  • 3Tom Malzbender. Fourier volume rendering [ J ]. ACM on Graphics, 1993,12 ( 3 ) : 233 - 250. 被引量:1
  • 4V Vapnik. The nature of statistics learning theory [ M ]. New York : Springer Verlag, 1995. 被引量:1
  • 5Mumford D, Shah J. Optimal approximation by pieeewise smooth functions and associated variational problems [J].Communication of Pure Applied Math, 1989, 42 ( 5 ) : 577 - 685. 被引量:1
  • 6[1]Jia- Guu LEU, Shape normalization through compacting,Pattern Recognition Letters 10 (1989) 243 ~ 250. 被引量:1
  • 7[2]Soo - Chang Pei, Chao - Nan Lin, Image normalization for pattern recognition, Image and Vision Computing, 1995,Vol. 13, 711 ~723. 被引量:1
  • 8[3]Wang Xiaohong, Zhao Rongchun, A New Method for Image Normalization, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. 被引量:1
  • 9[4]Alireza Khotanzad and Yaw Hua Hong, Invariant Image Recognition by Zemike Moments, IEEE Trans. On Pattern Analysis and Machine Intelligence, May, 1990,12(5). 被引量:1
  • 10HUM K. Visual pattern recognition by moment invariant[J]. IEEE Trans on Information Theory, 1962,8(2): 179- 187. 被引量:1

共引文献2348

同被引文献68

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部