期刊文献+

一种运用势能理论的骨架特征提取方法 被引量:2

New Method of Potential Energy Theory Based Feature Extraction of Skeleton
下载PDF
导出
摘要 一种好的特征提取方法可以使模式识别和目标跟踪系统的性能得到较大的提高.二值图像势能理论和方法是一种利用像素所具有的势能来表现图像特征的新方法.运用图像势能的方法把目标图像骨架的特征提取出来在特征提取领域是一种创新.经仿真实验,图像骨架的势能方法可以较好的表现出图像的特征,计算速度快,占用存储空间小,准确性高.骨架势能的方法可以应用到目标分类,目标识别,特征提取等多个领域. A good feature extraction method can greatly improve system performance of the pattern recognition and target tracking.Binary image potential energy theory is a new application of represent the image feature,which is using the potential energy of pixel.In feature extraction field,using image potential energy method to extract feature of target skeleton is an innovation.Within simulation experiment,Skeleton potential energy method is better shown the feature of the image,which given us a good result in speed,efficient,accurate in experiment.The method can be applied to the target classification,target recognition,feature extraction and other fields.
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第1期151-155,共5页 Journal of Chinese Computer Systems
基金 国家部委基金项目资助
关键词 图像处理 骨架 势能 特征提取 目标识别 image processing skeleton potential energy feature extraction target recognition
  • 相关文献

参考文献4

二级参考文献29

  • 1胡健,汪庆宝,涂承宇.多层前向神经网络在手写体数字识别应用中的研究[J].北京工业大学学报,1996,22(4):127-133. 被引量:5
  • 2Matthews N D, An P E, Charnley D, et al. Vehicle detection and recognition in greyscale imagery[J]. Control Eng. Practice, 1996, 4(4) :473-479. 被引量:1
  • 3Goerick C, Detlev N, Werner M. Artificial neural networks in real-time car detection and tracking application [J]. Pattern Recognition Letters, 1996, (17): 335-343. 被引量:1
  • 4Thiang, Lim R, Guntoro A T. Car recognition using gabor filter feature extraction[C]. Circuits and Systems, APCCAS' 02, 2002, (2):451-455. 被引量:1
  • 5Sun Z, Bebis G, Miller R. On-road vehicle detection using gabor filters and support vector machines[C]. IEEE 14th International Conference on Digital Signal Processing, 2002: 1019- 1022. 被引量:1
  • 6Schneiderman H. A statistical approach to 3D object detection applied to faces and cars[C]. CMU-RI-TR-00-06, 2000, (1) : 746-751. 被引量:1
  • 7Papageorgiou C, Poggio T. A trainable system for object detection[J]. International Journal of Computer Vision, 2000, 4(4) : 15-33. 被引量:1
  • 8Sun Z, Bebis G, Miller R. Quantized wavelet features and support vector machines for on-road vehicle detection[C]. 7th International Conference on Control, Automation, Robotics and Vision, 2002, (3) :1641-1646. 被引量:1
  • 9Sun Z, Bebis G, Miller R. On-road vehicle detection: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5):694-711. 被引量:1
  • 10Sun Z,Bebis G, Miller R. Monocular precrash vehicle detection: features and classifiers[J]. IEEE Transactions on Image Processing, 2006, 15(7) :2019-2034. 被引量:1

共引文献22

同被引文献8

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部