期刊文献+

SiO_2溶胶配比对气凝胶隔热复合材料力学性能的影响 被引量:18

Effect of SiO_2 sol proportion on the mechanical properties of aerogel insulation composites
原文传递
导出
摘要 以无机陶瓷纤维为增强体,与SiO2溶胶混合,经超临界干燥制备了SiO2气凝胶隔热复合材料,研究了SiO2溶胶配比对气凝胶及其复合材料微观结构和力学性能的影响。结果表明,随着SiO2溶胶中乙醇含量的增大,SiO2气凝胶的密度逐渐降低,平均孔径增大,气凝胶中含有的大孔、连孔数量增加,网络骨架结构强度降低。纤维与SiO2气凝胶复合后,气凝胶充满了纤维间的孔隙,形成较好的界面结合。当乙醇/正硅酸乙酯(EtOH/TEOS)摩尔比由2∶1增加到20∶1时,SiO2气凝胶基体传递载荷能力逐渐减弱,材料的力学性能逐渐降低,其拉伸强度、弯曲强度和压缩强度分别由1.9 MPa、2.7 MPa、1.73 MPa(10%应变)降低到0.17 MPa、0.12 MPa、0.04 MPa(10%应变)。 SiO2 aerogel insulation composites were prepared by impregnating inorganic ceramic fiber with SiO2 sols results via supercritical drying.The effect of SiO2 sol on mechanical properties of the composites was investigated.The results show the higher the ethanol(EtOH) content in sol,the lower the density of aerogel,the bigger the average pore size,the less the cross-linking between the clusters and the lower the network strength of aerogel.The inorganic ceramic fibers are dispersed within the aerogel and closely packed by aerogels,thus a well interface is formed.With increasing the EtOH/TEOS molar ratio from 2 to 20,the load transfer capability of SiO2 aerogel is weakened,therefore,the mechanical properties of the aerogel composites decrease.The tensile,bending and compressive strengths of the composites decrease from 1.9MPa,2.7MPa,1.73MPa(10% strain) to 0.17MPa、 0.12MPa、 0.04MPa(10% strain),respectively.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2010年第6期179-183,共5页 Acta Materiae Compositae Sinica
基金 国防科技重点实验室基金资助项目(9140C8203050604)
关键词 无机陶瓷纤维 超临界干燥 气凝胶 力学性能 复合材料 inorganic ceramic fiber supercritical drying aerogel mechanical properties composites
  • 相关文献

参考文献11

  • 1Akimov Y K. Fields of application of aerogels [J]. Instrum Exp Techni, 2003, 46(3): 5-19. 被引量:1
  • 2Dorcheh A S, Abbasi M H. Silica aerogel: Synthesis, properties and characterization [J]. J Mater Proc Technol, 2008, 199: 10-26. 被引量:1
  • 3Gorle B S K, Smirnova I, Dragan M, et al. Crystallization under supercritical conditions in aerogels [J]. J Supercrit Fluids, 2008, 44: 78-84. 被引量:1
  • 4Schmid T M, Schwertfeger F. Applications for silica aerogel products [J]. J Non Cryst Solids, 1998, 225: 364-368. 被引量:1
  • 5Fesmire J E. Aerogel insulation systems for space launch applications [J]. Cryogenics, 2006, 46: 111-117. 被引量:1
  • 6Kim C Y, Lee J K, Kim B I. Synthesis and pore analysis of aerogel-glass fiber composites by ambient drying method [J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2008, 313/314: 179-182. 被引量:1
  • 7Zhang Z H, Shen J, Ni X Y, et al. Mechanical reinforcement of silica aerogel insulation with ceramic fibers [C]// Rong W. 2^nd IEEE International Nanoelectronics Conference. Shanghai: East China Normal University Press, 2008: 371-374. 被引量:1
  • 8Parmenter K E, Milstein F. Mechanical properties of silica aerogels [J]. J Non-Cryst Solids, 1998, 223: 179-189. 被引量:1
  • 9Karout A, Buisson P, Perrard A, et al. Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts [J]. J Sol-Gel Sci Technol, 2005, 36: 163-171. 被引量:1
  • 10Jaesoek R. Flexible aerogel superinsulation and its manufacture: US Patent, 6068882 [P]. 2000-05-30. 被引量:1

同被引文献158

引证文献18

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部