期刊文献+

Upper Bounds of the Rates of Decay for Solutions of the Boussinesq Equations

Upper Bounds of the Rates of Decay for Solutions of the Boussinesq Equations
原文传递
导出
摘要 In this paper, upper bounds of the L2-decay rate for the Boussinesq equations are considered. Using the L2 decay rate of solutions for the heat equation, and assuming that the solutions of the Boussinesq equations are smooth, we obtain the upper bounds of L2 decay rate for the smooth solutions and difference between the solutions of the Boussinesq equations and those of the heat system with the same initial data. The decay results may then be obtained by passing to the limit of approximating sequences of solutions. The main tool is the Fourier splitting method. In this paper, upper bounds of the L2-decay rate for the Boussinesq equations are considered. Using the L2 decay rate of solutions for the heat equation, and assuming that the solutions of the Boussinesq equations are smooth, we obtain the upper bounds of L2 decay rate for the smooth solutions and difference between the solutions of the Boussinesq equations and those of the heat system with the same initial data. The decay results may then be obtained by passing to the limit of approximating sequences of solutions. The main tool is the Fourier splitting method.
作者 Ying Liu
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2011年第1期105-114,共10页 应用数学学报(英文版)
关键词 the Boussinesq equations L2 decay Fourier splitting method the Boussinesq equations, L2 decay, Fourier splitting method
  • 相关文献

参考文献21

  • 1Bae, H.O., Choe, H.J. Decay rate for the incompressible flows in half-spaces. Math. Z., 238:799 816 (2001). 被引量:1
  • 2Borchers, W., Miyakawa, T. L^2 decay rate for the Navier-Stokcs flow in half spaces. Math. Ann, 282: 139 155 (1988). 被引量:1
  • 3He, C., Miyakawa, T. On weighted norm estimates for solutions to nonstationary Navier-Stokes in an exterior domain. J. Diff Equations, 246(6): 2355 2386 (2009). 被引量:1
  • 4He, C., Wang, L.Z. Weighted LP-estimates for stokes flow in R+^n (n > 2), with applications to the non stationary Navier-Stokes flow. SCIENCE CHINA Mathematics, preprint. 被引量:1
  • 5Heywood, J.G. The Navier-Stokes equations: On the existence, regularity and decay of solutions. Indiana University Math. J., 29:641- 681 (1980). 被引量:1
  • 6Hishida, T. Existence and regularizing properties of solutions for the nonstationary convection problem. Funkcialaj Ekvacioj, 34:449-474 (1991). 被引量:1
  • 7Kagei, Y. On weak solution of nonstationary Boussinesq equations. Differential and Integral Equations, 6: 587-611 (1993). 被引量:1
  • 8Leray, J. Sur le mouvement d' un liquide visqueux empiissant Uespace. Acta Math, 63:193-248 (1934). 被引量:1
  • 9Masuda, K. L2 decay of solutions of the Navier-Stokes equations in the exterior domains. In "Proceedings of Symposia in Pure Mathematics", 45: Part 2, 179-182 (1986). 被引量:1
  • 10Morimoto, H. Non-stationary Boussinesq equations. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 39:61-75 (1992). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部