期刊文献+

基于随机重连的复杂网络社团结构特性分析 被引量:5

Analysis of Community Structure in Complex Networks Based on Random Rewiring
下载PDF
导出
摘要 复杂网络的社团结构特性本质上是由网络的几阶度分布决定一直是网络科学领域悬而未决的问题之一。在保持网络一阶、二阶和三阶度相关特性不变的情形下,利用随机重连方法和社团检测算法研究了复杂网络的社团结构。通过对四种现实网络进行多次不同阶数的随机重连,发现一阶、二阶重连后,社团结构特性均随着重连次数的增加急剧下降,并在重连次数充分大后趋于稳定值。而保持网络3阶特性不变的随机重连所构造的网络,则可以很高的精度呈现原有网络的社团特性,从而表明网络的社团结构,可以由三阶度相关特性有效地刻画(不需要更高阶)。提供了一种网络构造方法,即利用3阶重连可构造体现现实网络社团结构等拓扑特性的随机网络。 By which order of degree distribution of networks,the community structure in complex networks can be remarkably maintained is always one problem up in the air in the network science.In this paper,the community structures of large-scale complex networks are studied based on community detection and random rewiring that maintains degree distribution of 1st-order,2nd-order and 3rd-order.We first analyze community structures of 4 representative realistic networks after random rewiring.Comparing with the analysis of the original networks,we find out that,after 1st-order or 2nd-order random rewiring,characteristics of community structure decline rapidly as the times of rewiring increase and they reach a stable level when the times of rewiring are large enough.However community structure is well maintained after 3rd-order random rewiring.We establish a path towards construction of random graphs matching the community structure property of real networks after the 3rd-order random rewiring.
出处 《微型电脑应用》 2010年第11期29-32,共4页 Microcomputer Applications
基金 国家自然科学基金资助项目(60674045 60731160629)
关键词 复杂网络 社团结构 随机重连 度相关特性 Complex Network Community Structure Random Rewiring Degree Correlation
  • 相关文献

参考文献5

  • 1汪小帆,李翔,陈关荣编著..复杂网络理论及其应用[M].北京:清华大学出版社,2006:260.
  • 2Fortunato S,Castellano C.Community structure in graphs[C].Encyclopedia of Complexity and Systems Science.2009,00238. 被引量:1
  • 3Mahadevan P,Krioukov D,Fall K,et al.systematic topology analysis and generation using degree correlations[J].ACM SIGCOMM Computer Commumcation Review,2006,36(4):135-146. 被引量:1
  • 4Lancichinetti A,Fortunato S,Kertész J.Detecting the overlapping and hierarchical community structure of complex networks[J].New Journal of Physics,2009,11:033015,. 被引量:1
  • 5Clauset A,Newman M E J,Moore C.Finding community structure in very large networks[J].Phys.Rev.E,2004,70:066111. 被引量:1

同被引文献35

  • 1史琼,樊嘉禄,叶建国,陈军.音乐治疗的历史及展望[J].中国康复理论与实践,2007,13(11):1044-1046. 被引量:63
  • 2GOTELLI N J,WERNER U.Statistical challenges in null model analysis[J].Oikos,2012,121(2):171-180. 被引量:1
  • 3MAHADEVAN P,HUBBLE C,KRIOUKOV D,et al.Orbis:rescaling degree correlations to generate annotated Internet topologies[J].ACM SIGCOMM Computer Communication Review,2007,37(4):325-336. 被引量:1
  • 4汪小帆,李翔,陈关荣.复杂网络引论--模型、结构与动力学[M].北京:高等教育出版社,2012:217-218. 被引量:1
  • 5MAHADEVAN P,KRIOUKOV D,FALL K,et al.Systematic topology analysis and generation using degree correlations[J].ACM SIGCOMM Computer Communication Review,2006,36(4):135-146. 被引量:1
  • 6方锦清.网络科学的理论模型及其应用课题研究的若干进展[C]//复杂系统与复杂性科学,2010:414. 被引量:1
  • 7Min N,Zhang H,Qu Z.Dynamic properties of a forest fire model[J].Abstract and Applied Analysis,2012,36(3):485-497. 被引量:1
  • 8Mahadevan P,Hubble C,Krioukov D,et al.Orbis:Rescaling degree correlations to generate annotated internet topologies[C]//Conference on Applications,Technologies,Architectures,and Protocols for Computer Communications,2007:325-336. 被引量:1
  • 9Li P.Community structure discovery algorithm on GPU with CUDA[C]//3rd IEEE International Conference on Broadband Network and Multimedia Technology,2010:1136-1139. 被引量:1
  • 10Kuan C,Li J,Chen C,et al.C++support and applications for embedded multicore DSP systems[J].Journal of Signal Processing Systems,2014,75(2):109-122. 被引量:1

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部