期刊文献+

FIFS:一种基于流序列的分组流识别方法

FIFS: a network flow identification method based on flow sequence
下载PDF
导出
摘要 为了在高速网络中实时、准确地识别多种协议产生的分组流,首先分析现有的识别方法,然后从应用协议有限状态机角度出发,提出使用完美有限状态机统一描述不同识别方法的思想。在此基础上,提出了基于流序列的分组流识别方法,利用协议有限状态机中状态变化特征识别特定协议产生的分组流,并提出了一个状态特征聚合算法,以构造协议状态特征集合。通过识别基于UDP的Skype语音流,说明此方法的可行性和有效性。 It is critical to real time acquire network flow information for network management and security.In order to accurately identify various application flows in high-speed networks,a thorough analysis of the existing traffic identification methods was made firstly.And then on the perspective of protocol finite state machine,a Perfect Finite State Machine(PFSM for short) which can describe different identification methods was put forward.On this basis,a Network Flow Identification Method based on Flow Sequence(FIFS for short) was proposed,which utilizes the characteristics of PFSM states transformation to identify protocol-specific flows.One state's feature aggregation algorithm was proposed for constructing the set of protocol state characteristics.Finally,by identifying UDPbased Skype flow,the feasibility and availability of FIFS were verified.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2010年第6期628-633,共6页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家863计划资助项目(2007AA01Z418)
关键词 P2P 有限状态机 流识别 应用协议 机器学习 P2P finite state machine flow identification application protocol machine learning
  • 相关文献

参考文献14

  • 1SEN S,WANG J.Analyzing peer-to-peer traffic across large networks[C].Proc of ACM SIGCOMM Internet Measurement Workshop,Marseilles,France:IEEE,2002. 被引量:1
  • 2MOORE D,KEYS K,KOGA R,et al.The coralReef software suite as a tool for system and network administrators[C].Proc of the 15th USENIX conferenceon Systems Administration,San Diego:USENIX Association,2001. 被引量:1
  • 3KARAGIANNIS T,BROIDO A,BROWNLEE N,et al.Is P2P dying or just hiding[C].Proc of the IEEE Globecom 2004,Dallas,Texas:IEEE,2004. 被引量:1
  • 4MOORE A.W,PAPAGIANNAKI K.Toward the accurate identification of network applications[C].Proc of the 6th Passive and Active Measurement Workshop,Berlin:Springer,2005. 被引量:1
  • 5SEN S,SPATSCHECK O,WANG D.Accurate,scalable in-network identification of P2P traffic using application signatures[C].The 13th International Conference on World Wide Web,New York:ACM Press,2004. 被引量:1
  • 6KARAGIANNIS T,BROIDO A,FALOUTSOS M,et al.Transport layer identification of P2P traffic[C].In IMC'04,Taormina,Italy:ACM Press,2004. 被引量:1
  • 7KARAGIANNIS T,PAPAGIANNAKI K,FALOU-TSOS M.BLINK:multilevel trafficclassification in the dark[J].ACM SIGCOMM Computer Communication Review,2005,35(4):229-240. 被引量:1
  • 8ZANDER S,NGUYEN T,ARMITAGE G.Self-learning IP traffic classification based on statistical flow characteristics[C].Proc of the 6th International Workshop on Passive and Active Network Measurement,Boston,Masschusetts:Springer-Verlag Berlin,2005. 被引量:1
  • 9ERMAN J,ARLITT M,MAHANTI A.Traffic classification using clusteringalgorithms[C].Proc of the 2006 SIGCOMM workshop on Mining network data,Pisa,Italy:ACM Press,2006. 被引量:1
  • 10BERNAILLE L,TEIXEIRA R,SALAMATIAN K.Early application identification[C].Proc of the 2006 ACM CoNEXT conference,Lisbon,Portugal:ACM Press,2006. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部