期刊文献+

人工智能与几何证明 被引量:1

ARTIFICIAL INTELLIGENCE AND GEOME—TRICAL PROVING
下载PDF
导出
摘要 实现人工智能的根本途径是脱离计算机的串行冯·诺依曼体系结构或模拟人类认知活动,机器证明是人工智能的重要研究课题,基于知识的平面几何证明系统—EUCLID是模拟人类几何专家证明的认知过程的知识系统,其基本思想就是组块式构造知识库,利用优越图进行索引。 The fundamentical way to realize AI is break away from series system structure of computer or simulation of thought processes Machine proving is the importance task of AI, EUCLID—a plane geometrical proving system based on knowledge is a knowledge system to simulate the thought processes geometrical experter proving geometrical problem Basic idea is that knowledge base are built with block, knowledge index with superior graphic and no-backtracking machine learning from failure
作者 唐云廷
出处 《佳木斯大学学报(自然科学版)》 CAS 1999年第1期101-104,共4页 Journal of Jiamusi University:Natural Science Edition
关键词 人工智能 机器学习 机器证明 几何证明 artificial intellingence, machinelearning, machineproving, knowlegesystem, basicgraphic
  • 相关文献

参考文献7

二级参考文献4

  • 1Gerald Dejong,Raymond Mooney. Explanation-Based Learning: An Alternative View[J] 1986,Machine Learning(2):145~176 被引量:1
  • 2John E. Laird,Paul S. Rosenbloom,Allen Newell. Chunking in Soar: The anatomy of a general learning mechanism[J] 1986,Machine Learning(1):11~46 被引量:1
  • 3J. R. Quinlan. Induction of decision trees[J] 1986,Machine Learning(1):81~106 被引量:1
  • 4Jiarong Hong. AE1: An extension matrix approximate method for the general covering problem[J] 1985,International Journal of Computer & Information Sciences(6):421~437 被引量:1

共引文献5

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部