期刊文献+

支持向量回归算法在NIR光谱法预测带鱼糜蛋白质和水分含量中的应用

Application of SVR to NIR prediction model for protein and moisture content in hairtail surimi
原文传递
导出
摘要 为考察支持向量回归(SVR)在鱼糜近红外光谱(NIRS)分析中应用的可行性,采用SVR对73份带鱼糜样品的NIR漫反射光谱及其蛋白质和水分含量的化学测定数据进行处理,建立了蛋白质和水分含量NIRS定标模型,首次尝试将近红外光谱技术应用到带鱼糜主要成分含量的测定中。采用留一法交叉验证(LOOCV)的蛋白质和水分相关系数分别为0.90和0.96,并用独立样本集对模型进行外部验证。结果表明,SVR模型的预测能力比较好。因此,可以将NIR光谱支持向量回归法预测带鱼糜蛋白质和水分含量应用到鱼糜品质的快速评价中。 To observe the feasibility of the application of Support Vector Regression(SVR) in surimi by near infrared spectroscopy(NIRS) analysis,NIR diffuse reflectance spectra and experimental values of protein and moisture content of 73 surimi samples were processed with SVR,and NIRS calibration models of protein and moisture content were established.This is the first attempt to apply near infrared spectroscopy with determination of major components in Trichiurus japonicus surimi.The results of internal and external verification with leave-one-out(LOOCV) and independent samples showed that SVR model's predictive ability was good,the correlation coefficient of protein and moisture is 0.90 and 0.96 in LOOCV.Therefore,NIR spectroscopy with SVR can predict protein and moisture content in surimi and can be applied to the rapid evaluation of the quality of surimi.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2010年第12期1621-1624,共4页 Computers and Applied Chemistry
基金 "十一五"国家科技支撑计划项目(2008BAD94B09) 国家自然科学基金项目(30901125) 农业部"948"项目(2006-G43) 上海市教委重点学科建设项目(J50704)
关键词 带鱼糜 近红外光谱 支持向量回归 水分 蛋白质 Hairtail surimi near-infrared spectroscopy Support Vector Regression moisture protein
  • 相关文献

参考文献3

二级参考文献51

  • 1陈鹰,丁映,乐俊明.烟草中三种主要成分的近红外光谱分析与化学分析方法比较[J].贵州农业科学,2004,32(5):72-72. 被引量:5
  • 2张录达,苏时光,王来生,李军会,杨丽明.支持向量机(SVM)在傅里叶变换近红外光谱分析中的应用研究[J].光谱学与光谱分析,2005,25(1):33-35. 被引量:47
  • 3乐俊明,陈鹰,丁映.近红外光谱分析法测定烟草化学成分[J].贵州农业科学,2005,33(3):62-63. 被引量:38
  • 4Ishihama Y, Nakamura M, Miwa T, Kajima T and Asakawa N. A rapid method for pKa determination of drugs using pressure-assisted capillary electrophoresis with photodiode array detection in drug discovery. J Pharm Sci, 2002, 91:933-942. 被引量:1
  • 5Chaudry U A and Popelier P L A. Estimation of pKa using quantum topological molecular similarity descriptors: application to carboxylic acids, anilines and phenols. J Org Chem, 2004, 69:233-241. 被引量:1
  • 6Tehan B G, Lloyd E J, Wong M-G, Pitt W R, Montana J G, Manallack D T and Gancia E. Estimation of pKa using semicmpirical molecular orbital methods. Part 1: application to phenols and carboxylic acids. Quant Struct -Act Relat, 2002, 21:457-472. 被引量:1
  • 7Tehan B G, Lloyd E J, Wong M G, Pitt W R, Gancia E and Manallack D T. Estimation of pKa using semiempirical molecular orbital methods. Part 2: application to amines, anilines and various nitrogen containing heterocyelic compounds. Quant Struct-Act Relat, 2002, 21:473-485. 被引量:1
  • 8Parthasarathi R, Padmanabhan J, Elango M, Chitra K, Subramanian V and Chattaraj P K. pKa prediction using group philicity. J Phys Chem, A 2006, 110:6540-6544. 被引量:1
  • 9Xing L and Glen R C. Novel methods for the predictions of log P, pKa, and log D. J Chem Inf Comput Sci, 2002, 42:796-805. 被引量:1
  • 10Xing L, Glen R C and Clark R D. Predicting pKa by molecular free structured fingerprints and PLS. J Chem Irff Comput Sci, 2003, 43:870-879. 被引量:1

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部