期刊文献+

面向路基监测的WSN分簇自适应加权融合算法 被引量:2

Clustering Adaptive Weighted Fusion Algorithm of Wireless Sensor Network for Railway Embankment Monitor
下载PDF
导出
摘要 部署在铁路路基监测区域内的无线传感器网络(WSN),由于节点能量和带宽等资源的限制,要求数据的采集、处理、传输满足低能耗、高效率和高可靠性.本文提出面向智能监测的无线传感器网络分簇部署策略,在感兴趣的区域内部署尽量多的节点,并根据数量类型、环境特征等因素将网络以簇为单位进行划分.以簇为单位,采用自适应加权数据融合处理技术,将采集的地温数据按照精度分别乘以权重值再进行平均值处理,有利于降低数据冗余度,提高数据准确度和采集效率.仿真性能分析表明,该方法可以显著提高数据传输效率,降低网络能耗,延长网络生命周期. Due to energy and bandwidth constraints,data collection,processing and transmission of wireless sensor network deployed in railway roadbed monitoring area,are required to be low energy consumption,high efficiency and high reliability.This paper puts forward the wireless sensor network clumping deployment strategy for intelligent monitoring,which would deploy data collection node as much as possible,and divide network to cluster as a single unit according to the number of node types,environmental characteristic.Processed the collection data using adaptive weighted fusion processing technology,which helps reduce data redundancy,improve data accuracy and collection efficiency.Simulation performance analysis shows that this method can greatly improve the data transmission efficiency,reduce the network energy consumption and prolong the network life cycle.
出处 《交通运输系统工程与信息》 EI CSCD 2010年第6期190-194,共5页 Journal of Transportation Systems Engineering and Information Technology
基金 北京市自然科学基金资助项目(4092047)
关键词 铁路运输 信息技术 智能监测 无线传感网络 分簇部署 数据融合 railway transportation information technology intelligent monitor wireless sensor network clustering deployment data fusion
  • 相关文献

参考文献5

二级参考文献30

共引文献271

同被引文献11

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部