期刊文献+

含噪声混沌序列的自适应预测算法

Adaptive prediction algorithm for contaminated chaotic signals
下载PDF
导出
摘要 为了得到鲁棒的自适应预测算法,对噪声的影响做了系统研究。在噪声能量较小时,推导出噪声对自适应预测算法影响的近似表达式,发现基函数的导数是影响预测精度的主要原因,根据该式选择鲁棒基函数可以改进算法的抗噪声性能。同时,分析了鲁棒的误差函数对算法精度的影响,并提出了进一步减小噪声影响的方法。数值仿真表明,改进的算法具有更好的抗噪声性能。 To achieve robust prediction algorithm,this paper studied how Gaussian noise deteriorates the performance of a predict algorithm.If the noise is low,its influence can be derived using a first-order approximation,and the expression implies that the differentials of the base functions is the determinant to the robust property of an algorithm.The influence of robust error function was analyzed,and another way to decrease noise was put forward.The improved prediction method has been applied to two chaotic systems and shows a robust performance to Gaussian noise.
出处 《计算机应用》 CSCD 北大核心 2010年第12期269-271,共3页 journal of Computer Applications
关键词 混沌时间序列 自适应预测 高斯噪声 鲁棒特性 误差函数 chaotic time series adaptive prediction Gaussian noise robust property error function
  • 相关文献

参考文献5

二级参考文献49

  • 1贾永红,张春森,王爱平.基于BP神经网络的多源遥感影像分类[J].西安科技学院学报,2001,21(1):58-60. 被引量:30
  • 2FARMER J D, SIDOROWICH J J. Predicting chaotic time series [ J]. Physical Review Letters, 1987, 59 (8): 845 -848. 被引量:1
  • 3SUGIHARA G, MAY R M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series [J]. Nature, 1990, 344(4): 734 -741. 被引量:1
  • 4KANTZ H, SCHREIBER T. Nonlinear time series analysis [ M]. 2nd ed. London: Cambridge University Press, 2004:234-275. 被引量:1
  • 5SABRY-RIZK M, ZGALLAI W. Novel Voherra predictor based on state-space equilibrium of nonlinear single or multi-fractal signals [ C]// 10tb Conference on Advanced Signal Processing Algorithms, Architectures, and Implementations, SPIE4116. Bellingham, WA: Society of Photo-Optical Instrumentation Engineers, 2000, 4116:322-333. 被引量:1
  • 6[芬兰]HYVARINENA,KARHUNENJ,OJAE.独立成分分析[M].周宗潭,董国华,徐昕,等译.北京:电子工业出版社,2007:120-136. 被引量:1
  • 7CISZAK M, GUTIERREZ J M, COFINO A S, et al. Approach to predictability via anticipated synchronization [ J]. Physical Review E, 2005, 72(4) : 046218.1 -046218.8. 被引量:1
  • 8Farmer J D and Sidorowich J J 1987 Phys. Rev. Lett. 59 845. 被引量:1
  • 9Crutchfield J P and McNamara B S 1987 Complex Systems 1 417. 被引量:1
  • 10Casdagli M 1989 Phys. D 35 335. 被引量:1

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部