摘要
采用模糊数处理不确定性信息.以模糊期望收益率最大为目标函数,使总的风险不高于给定的模糊数,建立了一种新的模型.在给定的截集下,期望收益率转化为区间数,目标函数转化为对该区间数的下限求最大值.基于模糊数大小的概率比较,从而将模糊优化模型转化为不等式约束下的线性规划模型.利用Matlab编程可解得其最优解.最后通过实例分析,验证该模型的可行性.
In this paper,the portfolio selection problem is discussed from the viewpoint of fuzziness.Take the expected rates of security return as the objective function,and let the risks are not higher than the given fuzzy numbers.The new model is proposed.Based on the given cut set,the expected rates of security return is transformed to the intersection number and the objective function is transformed to the maximum value for its lower limit.Through the comparison beween trigangular mumbers,the fuzzy optimized model is transformed to the linear programming model under the inequality restraints.The optimal solution is solved by using matlab.Finally an example is given to illustrate that the new models can be used efficiently to solve portfolio selection problems.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第22期1-9,共9页
Mathematics in Practice and Theory
基金
国家自然科学基金(40271037)
关键词
投资组合模型
模糊数
模糊期望收益率
证券市场
〈Keyword〉fuzzy portfolio selection model
fuzzy numbers
fuzzy expected rate of return
securities markets