期刊文献+

非线性松动转子密封混沌系统状态观测器方法

Study on State Observer Method of Nonlinear Loose Rotor Seal Chaotic System
下载PDF
导出
摘要 应用Muszynska非线性密封力模型,建立在气流激振力作用下的松动转子系统耦合动力学方程。根据状态观测器理论给出状态观测器控制对应算法。利用此方法对松动转子密封系统进行了仿真研究,研究结果表明,基于状态观测器的混沌反馈控制方法具有很强的稳定控制能力,该方法适合于被控系统的混沌状态不可能全部直接测量,或状态反馈不可能物理实现的情况下,用重构状态代替真实状态组成状态反馈,将系统调整到正常的工作状态。为旋转机械的理论设计和故障动态监测提供了理论依据。具有重要的实际工程应用价值。 By taking Muszynska's model for sealing force, the nonlinear dynamic equation of a rotor with loosing foundation was derived. According to state observer theory, a state observer control approach can be given. The approach was successfully applied to simulate a chaotic system of the rotor system. The simulation results show that the feedback chaotic control method of state observer possesses strong capability for stablizing the control. This method can be adjusted to normal working state through reconstructive state in order to get the state feedback. This method is suit to be for the chaotic state caused by outside perturbation, so which is impossible to have full direct measure or state feedback which can not to be realized by physical method. This control strategy is helpful to rotor system designed and maintenance.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第1期167-171,共5页 Journal of System Simulation
基金 山西省自然科学基金(2006011062) 山西省自然科学基金(2008012006-3)
关键词 松动转子 气流激振 混沌系统 状态观测器 loose rotor airflow induce chaotic system state observer
  • 相关文献

参考文献14

二级参考文献16

  • 1E.A.Mayer, K. J. Cios, L. Berke & A. Vary(University of Toledo, Toledo, OH 43606, U. S. A.)(NASA Lewis Research Center, Cleveland, OH).Using Genetic Algorithms to Improve the Search of the Weight Space in Cascade-Correlation Neural Network[J].Journal of Systems Engineering and Electronics,1995,6(2):9-21. 被引量:1
  • 2任兴民,顾家柳,秦卫阳.具有封严蓖齿转子系统的动力稳定性分析[J].应用力学学报,1996,13(2):77-83. 被引量:7
  • 3Ji Z, Zu J W. Method of multiple scales for vibration of rotor-shaft systems with non-linear bearing model. Journal of Sound and Vibration, 1998;293--305. 被引量:1
  • 4Ehrich F. Rotordynamic response in nonlinear anisotropic mounting systems. Proceedings of 4th International Conferences on Rotor Dynamics. Chicago,USA, 1994:1--6. 被引量:1
  • 5Kim Y B. Quasi-periodic response and stability analysis for a nonlinear Jeffcott rotor. Journal of Sound and Vibration, 1996;190(2): 239--253. 被引量:1
  • 6Wang H O, Tanaka K, Ikeda T. Fuzzy modeling and control of chaotic systems[J]. In IEEE Symp Circuits Syst Atlanta GA, 1996, (5): 209-212. 被引量:1
  • 7Pecora L M, Carroll T L. Synchronization in chaotic systems[J].Phys Rev Lett, 1990, 64: 821. 被引量:1
  • 8Pecora L M. Carroll T L. Driving systems with chaotic signals[J].Phys Rev Lett, 1991, A44: 2374. 被引量:1
  • 9Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control[J], IEEE Trans Syst Man Cybern, 1985, 15(1): 116-132. 被引量:1
  • 10Tanaka T, Sugeno M. Stability Analysis and Design of Fuzzy Control Systems[J]. Fuzzy Sets and Systems, 1992, 45: 135-156. 被引量:1

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部