期刊文献+

否定选择算法中一种改进的检测器集生成机制 被引量:3

Boundary-aware detector generation mechanism of negative selection algorithm
下载PDF
导出
摘要 为提高否定选择算法中检测器集的检测率,提出改进的检测器集生成方法。其主要针对检测器在检测边界元素时遇到的困境问题,把自体点和它的临近点一起作为自体区域,处理自体的泛化问题。给出算法的具体实现过程、优势分析,并通过人工合成数据集2DSyntheticData和实际Biomedical数据集对算法进行了验证。实验结果表明,本算法检测率较高,尤其可以有效检测到处于自体与非自体边界处的点,具有一定的优越性。 In order to improve the detection rate of negative selection algorithm, proposed an improved detectors generation method. It aimed at solving the boundary dilemma problem. Regard the self and its neighboring as self regions. Given detailed realization and advantages of the algorithm. The experiments of synthetic and real data sets ( iris data set and biomedical data set) results show that the algorithm has higher detection rate, especially for the points in the boundary of self and nonself. So it has better performance.
出处 《计算机应用研究》 CSCD 北大核心 2011年第1期137-138,144,共3页 Application Research of Computers
关键词 否定选择算法 边界困境 检测器 检测率 negative selection algorithm boundary dilemma detector detection rate
  • 相关文献

参考文献10

  • 1莫宏伟,左兴权著..人工免疫系统[M].北京:科学出版社,2009:606.
  • 2BERETA M,BURCZYNSKI T.Comparing binary and real-valued co-ding in hybrid immune algorithm for feature selection and classification of ECG signals[J].Engineering Applications Artificial Intelligence,2007,20(5):571-585. 被引量:1
  • 3GONZALEZ F,DASGUPTA D,NINO L F.A randomized rea-valued negative selection algorithm,ICARIS-03[R].2005. 被引量:1
  • 4ZHOU Ji,DASGUPTA D.Real-valued negative selection algorithm with variable-sized detectors[C]//Proc of Genetic and Evolutionary Computation.Berlin:Springer,2007:287-298. 被引量:1
  • 5ZHOU Ji,DASGUPTA D.Applicability issues of the real-valued negative selection algorithms[C]//Proc of Genetic and Evolutionary Computation Conference.2007:111-118. 被引量:1
  • 6柴争义,汪宏海.异常入侵检测系统虚警率问题研究[J].计算机科学,2009,36(11):68-70. 被引量:4
  • 7STIBOR T,TIMMIS J,ECKERT C.A comparative study of real-valued negative selection to statistical anomaly detection techniques[C]//Proc of the 4th International Conference on Artificial Immune Systems.2005:262-275. 被引量:1
  • 8柴争义,刘芳,朱思峰.新型智能入侵防御模型[J].华中科技大学学报(自然科学版),2010,38(1):22-24. 被引量:9
  • 9Columbia University.2DSyntheticData [EB/OL].[2010-03-12].http:∥www.zhouji.net/prof/2DSyntheticData.zip. 被引量:1
  • 10StatLib datasets archive [ EB/OL]. http://lib. stat. cmu. edu//dataset/. 被引量:1

二级参考文献16

共引文献9

同被引文献17

  • 1Gonzalez F,Dasgupta D,Kozma R. Combining negative selection and classification techniques for a normal detection[A].USA:IEEE Press,2002.705-710. 被引量:1
  • 2Gonzalez F,Dasgupta D,Nino L F. A Randomized Real-valued Negative Selection Algorithm[A].Seattle,USA:[s.n.],2005.23-28. 被引量:1
  • 3Zhou Ji,Dipankar Dasgupta. V-detector:An efficient negative selection algorithm with "probably adequate" detector coverage[J].Information Sciences,2009,(09):1390-1406. 被引量:1
  • 4Aydin I,Karakose M,Akin E. Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection[J].Expert Systems with Applications,2010,(07):5285-5294. 被引量:1
  • 5Forrest S,Perelson A S,All L. Self_nonself discrimination in a computer[A].Oakland.CA:IEEE Press,1994.202-212. 被引量:1
  • 6Lincoln Laboratory. Information Systems Technology[EB/OL].http://www.l1.mit.edu/IST/ideval/data/1999/1999_data_in-dex.html,2009. 被引量:1
  • 7Ilhan Aydin,Mehmet Karakose,Erhan Akin.Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection[J]. Expert Systems With Applications . 2010 (7) 被引量:1
  • 8Zhou Ji,Dipankar Dasgupta.V-detector : An efficient negative selection algorithm with “probably adequate” detector coverage[J]. Information Sciences . 2008 (10) 被引量:1
  • 9GONZALEZ F,,DASGUPTA D,KOZEMA D.Combining Negative and Classification Techniques for Anomaly Detection. Proceedings of the 2002 Congress on Evolutionary Computation CEC2002 . 2002 被引量:1
  • 10Forrest S,Perelson AS,Allen L,et al.Self-Nonself Discrimination in a Computer. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy . 1994 被引量:2

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部