期刊文献+

基于突发特征分析的事件检测 被引量:6

Analyzing bursty feature for event detection
下载PDF
导出
摘要 针对新闻数据流的事件检测问题,提出了一种基于突发特征分析的事件检测方法。事件由在一定时间窗口内代表它的特征构成,通常它们在事件发生时表现出一定的突发。通过多尺度突发分析算法识别出突发特征,并计算突发特征突发模式的相似性及所在新闻的重合度,对突发特征进行聚类分析以构造事件。在路透社80多万篇新闻数据集中验证上述算法,可准确地识别出突发特征各种跨度上的突发,且能有效地检测出事件。 This paper proposed an event detection method based on analyzing bursty features in news streams. Event is a minimal set of bursty features that occur together in certain time window with strong support of documents in the text stream. Introduced an elastic burst detection algorithm to identify multi-scale bursty features. Then, used affinity propagation clustering algo- rithm to group these bursty features with high document overlap and identically distribution in bursty time windows together. Conducted experiments using real life data, the Reuters Corpus volume 1, with over 800 thousands news reports across one year. The proposed algorithm can accurately identify the multi-scale bursty features and detect the events efficiently.
作者 陈宏 陈伟
出处 《计算机应用研究》 CSCD 北大核心 2011年第1期117-120,共4页 Application Research of Computers
基金 浙江省教育厅科研资助项目(Y200908583)
关键词 事件检测 特征轨迹 多尺度分析 突发特征 近邻传播聚类 event detection feature trajectory multi-scale analysis bursty feature affinity propagation clustering
  • 相关文献

参考文献17

  • 1Topic detection and tracking evaluation [ EB/OL ]. (2008-11-04). http ://www. hist. gov/speech/tests/tdt/. 被引量:1
  • 2ALLAN J,PAPKA R,LAVERENKO V.On-line new event detection and tracking[C]//Proc of the 21st Annual International ACM SIGIR Conference on Research and Development.New York:ACM Press,1998:37-45. 被引量:1
  • 3YANG Yi-ming,PIERCE T,CARBONELL J.A study on retrospective and on-line event detection[C]//Proc of the 21st Annual International ACM SIGIR Conference on Research and Development.New York:ACM Press,1998:28-36. 被引量:1
  • 4LAM W,MENG H M L,WONG K L,et al.Using contextual analysis for news event detection[J].International Journal of Intelligent Systems,2001,16(4):525-546. 被引量:1
  • 5YANG Yi-ming,ZHANG Jian,CARBONELL J,et al.Topic-conditioned novelty detection[C]//Proc of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2002:688-693. 被引量:1
  • 6KUMARAN G,ALLAN J.Text classification and named entities for new event detection[C]//Proc of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrielval.New York:ACM Press,2004:297-304. 被引量:1
  • 7张阔,李涓子,吴刚,王克宏.基于词元再评估的新事件检测模型[J].软件学报,2008,19(4):817-828. 被引量:17
  • 8ZHANG Kuo,LI Zi-juan,WU Li-gang.New event detection based on indexing-tree and name entity[C]//Proc of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM Press,2007:215-222. 被引量:1
  • 9BRANTS T,CHEN F,FARAHAT A.A system for new event detection[C]//Proc of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM Press,2003:330-337. 被引量:1
  • 10HE Qi,CHANG Kui-yu,LIM E P.Analyzing feature trajectories for event detection[C]//Proc of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrie-val.New York:ACM Press,2007:207-214. 被引量:1

二级参考文献3

共引文献16

同被引文献136

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部