期刊文献+

基于随机化Halton序列的粒子滤波算法研究 被引量:10

Research of particle filter algorithm based on randomized Halton sequences
下载PDF
导出
摘要 为了克服传统粒子滤波蒙特卡洛(MC)随机采样粒子之间的间隙过大与层叠,及其产生的采样效率和滤波精度较低的问题,提出一种基于Halton序列的拟蒙特卡洛(QMC)采样粒子滤波算法。该算法在对Halton序列进行随机化、较好地消除其各维之间相关性的基础上,将之应用于粒子采样过程,以代替蒙特卡洛随机采样,得到用均匀分布粒子近似的后验状态概率密度。仿真证实,算法性能要优于传统粒子滤波算法,改善了采样效率与计算精度,且能克服粒子的退化现象。 For conquering the possible large gaps and clusters which arose from Monte Carlo ( MC ) random sampling in tradi- tional particle filter and resulted in low sampling efficiency and accuracy, this paper proposed a particle filtering algorithm, which introduced Halton sequences based quasi-Monte Carlo (QMC)sampling. Firstly,randomized the Hahon sequences, that could break the correlation of the original ones. Applied the randomized sequences to the sampling process to replace the Monte Carlo random sampling, and could get the posterior state probability density represented by the uniformly distributed particles. Simulations show that the particle filtering algorithm is superior to the traditional one, and can improve the sampling efficiency and accuracy. Especially the algorithm can overcome the degradation of particles.
出处 《计算机应用研究》 CSCD 北大核心 2011年第1期91-94,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60702066)
关键词 拟蒙特卡洛 Halton序列 随机化 粒子滤波 quasi-Monte Carlo Hahon sequences randomized particle filter
  • 相关文献

参考文献8

  • 1ARULAMPALAM S, MASKELL S, GORDON N,et al.A tutorial on particle filter for on line nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188. 被引量:1
  • 2LEMIEUX C,Monte Carlo and quasi-Monte Carlo sampling[M].New York:Springer,2009:121-177. 被引量:1
  • 3FEIL B,KUCHERENKO S,SHAH N.Comparison of Monte Carlo and quasi Monte Carlo sampling methods in high dimensional model representation[C]//Proc of the 1st International Conference on Advances in System Simulation.Washington DC:IEEE Computer Society,2009:12-17. 被引量:1
  • 4OWEN A B.Monte Carlo variance of scrambled net quadrature[J].SIAM Journal on Numerical Analysis,1997,34(5):1884-1910. 被引量:1
  • 5L’ECUVER P,LEMKEJX C.Recent advances in randomized quasi-Monte Carlo methods[J].International Scries in Operations Research & Management Science,2005,46(6):419-474. 被引量:1
  • 6GENTLE J E.Random number generation and Monte Carlo methods [M].2nd ed.New York: Springer,2003:229-255. 被引量:1
  • 7GUO Dong,WANG Xiao-dong.Quasi-Monte Carlo filtering in nonlinear dynamic systems[J].IEEE Trans on Signal Processing,2006,50(6):2087-2098. 被引量:1
  • 8JOHNSON R A, WICHERN D W.Applied multivariate statistical analysis[M].6th ed.Upper Saddle River:Prentice Hall, 2007:149-189. 被引量:1

同被引文献74

引证文献10

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部