期刊文献+

随机蚕食快速Inc-SVDD算法及其应用 被引量:3

Random greed incremental SVDD algorithm and its application
原文传递
导出
摘要 针对SVDD处理大数据样本时存在时间复杂度较大的问题,提出一种随机蚕食快速增量式支持向量域数据描述(RGInc-SVDD)算法.RGInc-SVDD首先利用随机抽样定理将样本训练集分割为多个子集,然后将其中一子集用于建模Inc-SVDDi分类器,最后利用迭代蚕食算法合并增长Inc-SVDDi分类器,以生成整个训练集的SVDD分类器.RGInc-SVDD算法使得SVDD的时间复杂度从O(N3)降到O(N2r/Gn2).实验结果验证了RGInc-SVDD算法的正确性和有效性. To address the problem of SVDD(support vector data description) processing larget samples dataset with huge time complexity,a novel RGInc-SVDD(random greed incremental SVDD) algorithm was proposed.Firstly,using the SL(sampling lemma) to divide the training samples dataset into several small samples subsets;secondly,create an Inc-SVDDi model with one of samples subsets.Then,the rule of interactive random greed was applied to grow the Inc-SVDDi until the SVDD being created with whole training samples information.The RGInc-SVDD algorithm makes the time complexity significantly decrease from O(N3) to O(N2r/Gn2/k),where respectively denote the number of training samples and the number of random greed in each interactive step.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第12期94-97,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家重点基础研究发展计划资助项目(2007CB307102) 国家自然科学基金资助项目(60975052 F030508)
关键词 支持向量 抽样 随机 迭代蚕食 增量式 support vector sampling random interactive random greed incremental
  • 相关文献

参考文献16

  • 1Tax D M J, Duin R P W. Support vector data description[J]. Machine Learning, 2004. 54 (1):45- 66. 被引量:1
  • 2Suykens J A K, Vandewalle J. I.east squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300. 被引量:1
  • 3Tax D M J. One-class classification[D]. Netherlands: Technische Universiteit Delft, 2001. 被引量:1
  • 4Shin H J, Eom D H, Kim S S. One class support vector machines-an application in machine fault detection and classification [J]. Computers & Industrial Engineering, 2005 48(2): 395- 408. 被引量:1
  • 5Zhuang J F, l.uo J, Peng Y Q, et al. On-line fault detection method based on modified SVDD for industrial process system [C]// Intelligent System and Knowledge Engineering. Xiamen:IEEEXplore, 2008: 567-572. 被引量:1
  • 6Xie I., Kruger U. Statistical processes monitoring based on improved ICA and SVDD[J].Intelligent Computing, 2006, 4 113(3): 1 247-1 256. 被引量:1
  • 7Tao X, Liu F, Zhou T. A novel approach to intrusion detection based on support vector data description [C]//30th Annual Conference of IEEE Industrial Electronics Society. Busan: IEEEXplore, 2004: 12- 21. 被引量:1
  • 8Tax D M J, Laskov P. Online SVM learning: from classification to data description and back[C] // Proceedings of IEEE International Workshop on Neural Networks for Signal Processing. Berlin: IEEE, 2003: 499-508. 被引量:1
  • 9Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning [C]//Adv. Neural Information Processing, Boston: The MIT Press, 2001:409- 419. 被引量:1
  • 10Sillito R, Fisher R. Incremental one-class learning with bounded eomputational complexity[J]. Artificial Neural Networks, 2007, 4 668(5):58-67. 被引量:1

同被引文献18

  • 1Tax D M J, Duin R P W. Support vector data descrip- tion[J]. Machine Learning, 2004, 54(1): 45-66. 被引量:1
  • 2Tax D M J, Laskov P. Online SVM learning: from classification to data description and back[C] //IEEE 13th Workshop on Neural Networks for Signal Pro- cessing. Berlin: IEEE, 2003: 499-508. 被引量:1
  • 3Cauwenberghs G, Poggio T. Incremental and decre- mental support vector machine learning[C]//14th An- nual Neural Information Processing Systems Confer- ence. Boston: MIT Press Cambridge, 2000: 409- 415. 被引量:1
  • 4Chu C S, Tsang I W, Kwok J T. Scaling up support vector data description by using core-sets[C]//IEEEInternational Joint Conference on Neural Networks. Budapest: IEEE, 2004 : 425- 430. 被引量:1
  • 5Tax D M J, Duin R P W. Support vector domain de- scriptio[J]. Pattern Recognition Letters, 1999, 20 (11/13) : 1191-1199. 被引量:1
  • 6Jewman D, Hettich S, Blake C L, et al. UCI reposito- ry of machine learning databases[EB/OL]. [-2008- 09 -17]. http: // www. ics. ue. iedu/mlearn/ML- Repository. html. 被引量:1
  • 7Tax D M J,Duin R P W.Support vector data description [J].Ma-chine Learning,2004,54(1):45-66. 被引量:1
  • 8Tax D M J,Laskov P.Online SVM learning:from classification to data description and back [A].IEEE 13th Workshop on Neural Networks forSignal Processing Ec3.Berlin:IEEE,2003.499-508. 被引量:1
  • 9Cauwenberghs G,Poggio T.Incremental and decremental support vector machine learning [A].14th Annual Neural Information Pro-cessing Systems Conference [C].Boston:MIT PRESS CAM-BRIDGE,2000:409-415. 被引量:1
  • 10Chu C S,Tsang I W,Kwok J T.Scaling up support vector data de-scription by using core-sets [A].IEEE International Joint Confer-ence on Neural Networks [C].Budapest:IEEE,2004 425-430. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部