期刊文献+

一维泥石流的静动力阻力特征研究及数值模拟 被引量:2

CHARACTERISTICS OF STATIC AND DYNAMIC RESISTANCE OF ONE-DIMENSIONAL DEBRIS FLOW AND ITS NUMERICAL SIMULATION
下载PDF
导出
摘要 泥石流是山区多发的一种地质灾害,它的发生和发展威胁着人们的生命和财产安全,影响着人们的正常生活,因而需要加强对其发生和发展过程的研究。结合泥石流的动力模型方程采用数值模拟方法再现泥石流发生和发展的过程,是研究和预测模拟泥石流灾害的有效手段。目前的动力模型方程大多只关注动力过程,却忽视了静动力过程的统一,这将导致在一些情况下产生错误的结果。本文研究了一维泥石流的静动力阻力特征,通过修正泥石流动力学方程的阻力项,得到了具有静动力统一特征的模型方程。并以Roe格式的近似Riemann解为基础,采用MUSCL线性重构方法建立了具有较高精度和分辨率的有限体积数值求解。具体算例的数值验证表明,方程阻力项的修正是合理的,所建立的数值求解也是稳定和有效的。 Debris flow is one of the common mountain hazards and seriously threatens human lives and belongings and affects society development.Therefore,it is necessary to study more about its happening and development.The approach of combining the dynamic model equations with the use of the numerical methods can lead to in-depth understanding of the development of debris flow.This is an effective approach to study and forecast the debris flow disasters.However,a majority of the present dynamic model equations focus on the dynamic process,and ignore the combination of the static and dynamic process.In fact,this neglect may result in some mis-leading results under some condition.In this paper,the characteristics of static and dynamic resistance of one-dimensional debris flow are studied.By modifying the friction resistance term of the kinetic equation,the model equation is obtained for the uniform characteristic of static and dynamic.Based on the approximate Riemann solver of Roe scheme,the numerical solution with higher precision and resolution is achieved by use of MUSCL linear reconstruction.The numerical validation of an actual example proves the rationality of the modification of friction resistance term and the stability and effectivity of the developed numerical calculation.
出处 《工程地质学报》 CSCD 北大核心 2010年第6期857-861,共5页 Journal of Engineering Geology
基金 国家自然科学基金项目(40872152) "十一五"国家科技支撑计划重点项目(2006BAK30B02) 水沙科学与水利水电工程国家重点实验室自筹项目
关键词 泥石流 阻力特征 Roe格式 Debris flow Characteristics Static and dynamic resistance Roe scheme
  • 相关文献

参考文献16

  • 1Savage S B,Hutter K.Themotion of a finite mass of granular material down a rough incline[J].Journal of Fluid Mechanics,1989,199,177~215. 被引量:1
  • 2O'Brien J S,Julien P Y,Fullerton W T.Two dimensional water flood and mudflow simulation[J].Journal of Hydraulic Engineering,1993,119(2):244~261. 被引量:1
  • 3Wang Guangqian( Hydraulic Engineering, Tsinghua University).ANALYSIS ON THE DEBRIS FLOW SURGES[J].International Journal of Sediment Research,1994,9(3):166-175. 被引量:1
  • 4Iverson R M,Denlinger R P.Flow of variably fluidized granular masses across three-dimensional terrain:1 Coulomb mixture theory[J].Journal of Geophysical Research,2001,106(B1):537~552. 被引量:1
  • 5王纯祥,白世伟,江崎哲郎,三谷泰浩.基于GIS泥石流二维数值模拟[J].岩土力学,2007,28(7):1359-1362. 被引量:19
  • 6Denlinger R P,Iverson R P.Flow of variably fluidized granular masses across three-dimensional terrain:2 Numerical predictions and experimental tests[J].Journal of Geophysical Research,2001,106(B1):553~566. 被引量:1
  • 7Patra A K,Bauer A C,Nichita C C.Parallel adaptive numerical simulation of dry avalanches over natural terrain[J]:Journal of Volcanology and Geothermal Research,2005,139(1-2):1~21. 被引量:1
  • 8Jeyapalan J K,Duncan J M,Seed H B.Analyses of flow failures of mine tailings dams[J].Journal of Geotechnical Engineering,1983,109(2):150~171. 被引量:1
  • 9Roe P L.Approximate riemann solvers parameter vectors and difference schemes[J].Journal of Computational Physics,1981,43(2):357~372. 被引量:1
  • 10柏禄海,金生.带源项浅水方程的高阶格式研究[J].水动力学研究与进展(A辑),2009,24(1):22-28. 被引量:9

二级参考文献24

  • 1王志力,耿艳芬,金生.带源项浅水方程的通量平衡离散[J].水科学进展,2005,16(3):373-379. 被引量:10
  • 2耿艳芬,王志力,金生.一维浅水方程的高精度GODUNOV格式[J].水动力学研究与进展(A辑),2005,20(4):507-512. 被引量:14
  • 3王纯祥,白世伟,江崎哲郎,三谷泰浩.泥石流的二维数学模型[J].岩土力学,2007,28(6):1237-1241. 被引量:17
  • 4BERMUDEZ A, VAZQUEZ M E. Upwind methods for hyperbolic conservation laws with source terms [J]. Computers & Fluids, 1994, 23(8): 1049-1071. 被引量:1
  • 5HUBBARD M E, GARC1A-NAVARRO P. Flux Difference splitting and the balancing of source terms and flux gradients [J]. J. Comput. Phys, 2000, 165(1): 89-125. 被引量:1
  • 6ZHOU J G, CAUSON D M, MINGHA C G. Ingram. The surface gradient method for the treatment of source terms in the shallow-water equations[J]. J. Comput. Phys, 2001, 168(1): 1-25. 被引量:1
  • 7GARCIA-NAVARRO P, VAZQUEZ-CENDON M. E. On numerical treatment of the source terms in the shallow water equations [J]. Computers & Fluids, 2000, 29(8): 951-979. 被引量:1
  • 8VAN LEER B. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method [J]. J. Comput. Phys. 1979,32(1): 101-136. 被引量:1
  • 9ALCRUDO F, GARCIA-NAVARRO P. A highresolution Godunov-type scheme in fmite volumes for the 2D shallow-water equations[J]. Int. J. Numer. Methods Fluids, 1993,16(6): 489-505. 被引量:1
  • 10NUJIC M. Efficient implementation of non-oscillatory schemes for the computation of free-surface flows [J]. J. Hydraul. Res., 1995,33(1): 101-111. 被引量:1

共引文献43

同被引文献22

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部