期刊文献+

价电子能级连接性指数及其应用 被引量:56

A MOLECULAR CONNECTIVITY INDEX OF VALENCE\= ENERGY LEVEL AND ITS APPLICATIONS
下载PDF
导出
摘要 价电子能级连接性指数(fE)被定义为:fE=Σ(mi·mj…)-0.5,m为价电子能级值。其中0、1阶指数公式分别为:0E=Σ(mi)-0.5、1E=Σ(mi·mj)-0.5。0E、1E与化合物的总键能(ΔE)、晶格能(U)、标准生成焓(ΔfHm)以及非金属氢化物的pKa呈现高度相关性。它们的线性回归方程为:ΔE=-48.0095+1402.94631E,r=0.9474,U=-328.0770+1541.93511E,r=0.9801,-ΔfHm=-266.9299+1324.64611E,r=0.9509,pKa=-20.9723+28.17561E,r=0.98884,pKa=-14.6102-7.8350E+40.64611E,R=0.9933。m、fE具有物理意义明确、计算方法简单等优点,而且预测结果令人满意。 In this paper the molecular connectivity index of valence energy level is defined as \+f\%E\%=(\%m\%\-i\%m\%\-j)\+\{-0.5\}, and \%m\% is an energy level value of valence electron in atom. Among them the formulas of zero, first topological index are \+0\%E\%=(\%m\%\-i)\+\{-0.5\}, \+1\%E\%=(\%m\%\-i\%m\%\-j)\+\{-0.5\} respectively. \+0\%E\% and \+1\%E\% have highly correlativity for total bond energies, lattice energies, standard enthalpies of formation of the compounds and pKa of the nonmetal hydrides. Their linear regression equations are proposed as follow:\%E\%=-48.0095+1402.9463\+1\%E\%,\%r\%=0.9474, \%U\%=-328.0770+1541.9351\+1\%E\%, \%r\%=\{0.9801\},-fH\%\-m=-266.9299+1324.6461\+1\%E\%, \%r\%=0.9509, p\%K\%a=-20.9723+28. 1756\+1\%E\%, \%r\%=\{0.98884,\} p\%K\%a=-14.6102-7.835\+0\%E\%+40.6461\+1\%E\%, \%R\%=0.9933. \%m\% and \+f\%E\% have been demonstrated that the method possesses the advantage of easy computation and clear physical significance. The predicting results by \+0\%E\% and \+1\%E\% are also satisfactory.\;\;
作者 冯长君
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 1999年第3期363-370,共8页 Chinese Journal of Inorganic Chemistry
关键词 价电子能级 连接性指数 键能 晶格能 标准生成焓 molecular connectivity index of valence energy level\ \ \ total bond energy\= lattice energystandard enthalpy of formation\ \ \ p\%K\%a
  • 相关文献

参考文献12

二级参考文献8

共引文献41

同被引文献296

引证文献56

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部