期刊文献+

求解非线性互补问题一个新的Jacobian光滑化方法 被引量:3

A NEW JACOBIAN SMOOTHING METHOD FOR SOLVING NONLINEAR COMPLEMENTARITY PROBLEM
原文传递
导出
摘要 本文构造了非线性互补问题一个新的光滑逼近函数,分析了该函数的一些基本性质.利用这一新的光滑逼近函数建立了求解非线性互补问题的一个Jacobi光滑化方法,并证明了在适当的条件下这一算法是全局及局部超线性收敛的.数值结果表明该方法是有效的. In this paper, a new smoothing approximation function of NCP is given and its some properties are analyzed. By this new function, a new Jacobian smoothing method for P0- NCP is proposed. The presented method is globally and locally superlinearly convergent under suitable conditions. Some numerical results show that this method is effective for the given problem.
作者 陈争 马昌凤
出处 《计算数学》 CSCD 北大核心 2010年第4期361-372,共12页 Mathematica Numerica Sinica
基金 国家自然科学基金(11071041) 福建省自然科学基金(2009J01002)资助项目
关键词 非线性互补问题 光滑逼近函数 Jacobi光滑化方法 收敛性分析 数值实验 nonlinear complementarity problem (NCP) smoothing approximation function Jacobian smoothing method convergence analysis numerical experiment
  • 相关文献

参考文献6

  • 1Harker P T and Pang J S.Finite-dimensional variational inequality and nonlinear complementarity problems:a survey of theory,algorithms and applications[J].Mathematical Programming,1990,48(1):161-220. 被引量:1
  • 2Ferris M C and Pang J S.Engineering and economic applications of complementarity problems[J].SIAM Review,1997,39(3):669-713. 被引量:1
  • 3Fischer A.An NCP-function and its use for the solution of complementarity problems,in:D.Du,L.Qi and R.Womersley,eds.,Recent Advances in Nonsmooth Optimization (World Scientific Publishers,New Jersy,1995,88-105. 被引量:1
  • 4Chen X,Qi L and Sun D.Global and superlinear convergence of the smoothing Newton method and its application to general box-constrained variational inequalities[J].Mathematics of Computation,1998,67(1):519-540. 被引量:1
  • 5Chen B and Harker P T.Smoothing approximations to nonlinear complementarity problems[J].SIAM Journal on Optimization,1997,7(1):403-420. 被引量:1
  • 6Kanzow C.Some noninterior continuation methods for linear complementarity problems[J].SIAM J.Matrix Anal.,1996,17:178-193. 被引量:1

同被引文献13

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部