期刊文献+

基于免疫遗传的伪装入侵检测 被引量:2

Masquerade intrusion detection algorithm with immune and genetic
下载PDF
导出
摘要 为了有效应对网络伪装入侵,提出了一种基于免疫遗传理论的伪装入侵检测算法,给出了入侵检测中抗体和抗原的形式化定义,建立遗传算子的数学模型以及抗体种群进化的递推方程,最后给出了入侵检测过程。理论分析和实验结果表明,该算法具有较好的鲁棒性和自适应能力,以及搜索和优化性能优异,能够在一定程度提高入侵检测的命中率,并取得较小的误报率,为伪装入侵检测提供了一种新的解决方案。 To response effectively the masquerade intrusion of network,an algorithmbased immune and genetic formasquerade intrusion detection is presented.First of all,the formal definitions of antibodies and antigens are introduced.Afterward,the mathematicalmodel of genetic operators is established as well as the evolution equation of antibodies populations.Finally,the process of intrusion detection is presented.Both the theoretical analysis and experimental results show that the algorithm has better robustness and adaptive capacity. The performance of search and optimization of algorithm are higher than other methods.It achieves better hit rate and lower false alarm. In this way,a new solution for masquerade intrusion detection is provided.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第23期4968-4970,4975,共4页 Computer Engineering and Design
基金 国家海洋公益性行业科研专项经费基金项目(200805015)
关键词 入侵检测 克隆选择 高频变异 人工免疫 遗传算法 intrusion detection clonal selection high-frequency mutation artificial immune genetic algorithm
  • 相关文献

参考文献9

二级参考文献24

共引文献25

同被引文献17

  • 1魏兴,张凤斌,王占锋,李昕.否定选择算法在网络入侵检测中的应用[J].哈尔滨理工大学学报,2006,11(2):90-93. 被引量:8
  • 2Kim H S,Cha S D. Empirical Evaluation of SVM-based Mas-querade Detection Using UNIX Commands[J].Computers & Security,2005,(02):160-168. 被引量:1
  • 3Schonlau M,Mouchel W. Computer Intrusion:Detecting Mas-querades[J].Statistical Science,2001,(01):58-74. 被引量:1
  • 4Li Ling,Sui Song,Manikopoulos C N. Windows NT User Profiling for Masquerader Detection[A].IEEE Computer Society,2006.386-391. 被引量:1
  • 5Garg A,Rahalkar R,Upadhyaya S. Profiling Users in GUI Based Systems for Masquerade Detection[A].New York,USA:IEEE Computer Society,2006.48-54. 被引量:1
  • 6Strasburg C,Krishnan S,Dorman K. Masquerade Detec-tion in Network Environments[A].Seoul,Korea:IEEE Computer Society,2010.38-44. 被引量:1
  • 7Maxion R A,Townsend T N. Masquerade Detection Augment-ed with Error Analysis[J].IEEE Transactions on Reliability,2004,(01):124-147. 被引量:1
  • 8Lane T,Carla E B. An Empirical Study of Two Approaches to Sequence Learning for Anomaly Detection[J].Machine Learning,2003,(01):73-107. 被引量:1
  • 9Munafo M,Finamore A. TSTAT[EB/OL].http://tstat.tlc.polito.it/index.shtml,2012. 被引量:1
  • 10Lin Chih-Jen. LIBSVM[EB/OL].http://www.csie.ntu.edu.tw/~cjlin/,2002. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部