期刊文献+

各向异性Heisenberg群上一类Hardy-Sobolev型不等式 被引量:4

Hardy-Sobolev type inequalities on anistropic Heisenberg groups
下载PDF
导出
摘要 采用Badiale和Tarantello在R^n上建立Hardy-Sobolev不等式的思想,首先建立各向异性Heisenberg群上的函数表示公式,给出一类Hardy型不等式;然后利用Hlder不等式和Sobolev不等式,通过插值给出各向异性Heisenberg群上的Hardy-Sobolev型不等式.结合Lions的集中列紧原理的思想,得到Hardy-Sobolev型不等式极值函数的存在性. Inspired by the ideas of Badiale and Tarantello,who have established Hardy-Sobolev inequalities on R^n,a class of Hardy-Sobolev type inequalities on anistropic Heisenberg groups is given via a new representation formula for functions.Using the Concentration-Compactness principle,extremal functions realizing equality of the inequalities are discussed.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2010年第4期440-446,共7页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 浙江省自然科学基金(Y6090359) 浙江省教育厅重点项目(Z200803357)
关键词 Hardy-Sobolev型不等式 HARDY型不等式 极值函数 各向异性Heisenberg群 Hardy-Sobolev type inequality Hardy type inequality extremal function anistropic Heisenberg group
  • 相关文献

参考文献2

二级参考文献17

  • 1Der Chen CHANG,Jing Zhi TIE.A Note on Hermite and Subelliptic Operators[J].Acta Mathematica Sinica,English Series,2005,21(4):803-818. 被引量:7
  • 2Mingbao SUN,Xiaoping YANG.Quasi-convex Functions in Carnot Groups[J].Chinese Annals of Mathematics,Series B,2007,28(2):235-242. 被引量:3
  • 3Magnus, W., Obcrhcttingcr, F., Soni, R. P.: Fornmlas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, Berlin-New York-Heidelberg, 1964. 被引量:1
  • 4Hormander, L.: Hypoelliptic second-order differential equations. Acta Math., 119, 147-171 (1967). 被引量:1
  • 5Calin, O., Chang, D. C., Tie, J.: Local Nonsolvability for Gruhsin type operators, preprint, (2003). 被引量:1
  • 6Andrews, G., Askey, H., Roy, H.: Special Functions, Encyclopedia of mathematics and its applications #71,Cambridge University Press, Cambridge, United Kingdom, 1999. 被引量:1
  • 7Beals, R., Gaveau, B., Grcincr, P. C.: Complex Hamiltonian mechanics and parametrics for subclliptic Laplacians, Ⅰ,Ⅱ,Ⅲ. Bull. Sci. Math., 121, 1 36, 97 149, 195-259 (1997). 被引量:1
  • 8Beals, R., Greiner, P. C.: Calculus oll Heisenberg manifolds, Ann. Math. Studies #119, Princeton University Press, Princeton, New Jersey, 1988. 被引量:1
  • 9Chang, D. C., Tie, J.: Estimates for spectral projection operators of the sub-Laplacian oll the Heisenberg group. J. Analyse Math., 71, 315-347 (1997). 被引量:1
  • 10Chang, D. C., Tie, J.: Estimates for powers of sub-Laplacian on the non-isotropic Heisenberg group. J. Geom. Anal., 10, 653-678 (2000). 被引量:1

共引文献11

同被引文献18

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部