期刊文献+

大口径平面镜的计算机辅助瑞奇-康芒检验 被引量:4

Computer added Ritchey-Common test for large flat mirror measurement
下载PDF
导出
摘要 在瑞奇-康芒检测中,被检平面本身所固有的像散和大曲率在被检系统波像差数据中都表现为像散。由于被检平面处于发散光路中,这就使得平面面形与系统波像差之间的关系(即影响函数)变得十分复杂,推导起来十分困难,只能进行定性或半定量检测。文中介绍了如何通过计算机光线追迹模拟瑞奇-康芒检验,在两个瑞奇角下得到两组影响函数,以此建立过定方程组,由干涉仪检测得到的两个不同瑞奇角下的系统波像差,通过最小二乘法解过定方程组,拟合得到被检平面镜的面形误差;实现了大口径平面镜的定量检测,并以平面镜直接检验的面形误差作为对比,检验结果的一致验证了该方法的准确性与可行性。 In Ritchey-Common test,the intrinsic astigmatism of the mirror plane under test and the astigmatism of the large curvature can not be distinguished in the measured system wave-front aberration.The flat is set in a divergent beam,which makes the relation between figure errors of flat and wavefront aberrations(influence function) complicate and difficult to derive.The procedure to simulate the Ritchey-Common test to derive the relationships between the figure errors of an optical flat and the wavefront aberrations,as well as the procedure to construct two set of influence functions by ray-tracing program are presented.Figure errors of the flat can be extracted from a set of over defined linear equations with the aid of least squares,using the influence functions and the measured wavefront aberrations for two different Ritchey angles.Both Ritchey-Common test and direct measurement results are presented. The comparison result proved the feasibility and reliability of this method.
出处 《应用光学》 CAS CSCD 北大核心 2010年第6期984-988,共5页 Journal of Applied Optics
关键词 光学检测 瑞奇-康芒检验 波像差 影响函数 optics test Ritchey-Common test wavefront aberration influence function
  • 相关文献

参考文献8

二级参考文献9

  • 1田秀云,吴时彬,伍凡,陈强,吴永前.高精度大口径平面镜瑞奇康芒定量检测方法研究[J].光学技术,2004,30(4):486-488. 被引量:16
  • 2K L Shu. Ray-trace analysis and data reduction methods for the Ritchey-Common Test[J]. Appl Opt, 1983,22(12): 1879-1886. 被引量:1
  • 3Max Bom. Emil Wolf. Principles of Optics[M]. Pergamon Press,1980. 被引量:1
  • 4Sen Han,Erik Novak et al. Application of Ritchey-Common test in large flat mearsurements[J]. Proceedings of SPIE , 2001 , 4399:131-136. 被引量:1
  • 5曹根瑞 邵联贞 安德逊 等.计算机辅助的瑞奇-康芒检验.北京工业学院学报,1988,8(4):46-53. 被引量:3
  • 6Han S,Novak E,Schuring M.Application of Ritchey-Common test in large flat mearsurements[J].SPIE,2001,4399:131-136. 被引量:1
  • 7SHU K L.Ray-trace analysis and data reduction methods for the Ritchey-Common Test[J].Applied Optics,1983,22(12):1879-1886. 被引量:1
  • 8Born M.Wolf E.Principles of optics[M].Pergamon Press,1980. 被引量:1
  • 9Malacara D.Optical shop testing(Second Edition)[M].1992.309-312. 被引量:1

共引文献22

同被引文献31

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部