期刊文献+

分数阶傅里叶变换与虚拟阵列相结合的波达方向估计 被引量:2

DOA Estimation Based on Combining of Fractional Fourier Transform and Virtual Array
下载PDF
导出
摘要 针对常规的MUSIC、ESPRIT算法不能估计宽带线性调频(LFM)信号、相干LFM信号和平滑技术解相干在低信噪比下精度不高的问题,提出了一种基于分数阶傅里叶变换(Fractional Fourier Transform,FRFT)与虚拟阵列变换法相结合的宽带相干LFM信号的波达方向(DOA)估计方法。该方法首先将天线阵的观测信号变换到分数阶Fourier域(FRF域),把时域时变的方向向量转化为FRF域时不变的方向向量,然后构造FRF域的阵列信号相关矩阵,用虚拟阵列变换法对相干信号进行解相干,再用ESPRIT算法进行波达方向估计。理论分析和仿真结果表明:在较低信噪比和较少采样快拍时,不仅能实现更准确的DOA估计,而且不损失阵列的孔径,使N个阵元中可估计相干信号源数目达N-1个,提高了阵元数的利用率。 Aiming at the problems that the conventional MUSIC,ESPRIT algorithm can not estimate wideband linear frequency modulation(LFM) signals,and coherent LFM signal and decorrelation precision under low SNR of smoothing techniques is low.A method based on fractional Fourier transform(FRFT) and the virtual array transformation was proposed.By this algorithm,the observed signals were firstly transformed to fractional Fourier domain,and the time-varying direction vector in time domain was changed to the time-invariant vector in fractional Fourier domain,and then constructed the fractional Fourier domain correlation signal matrix of the fractional Fourier domain,and the decorrelation was obtained by virtual array transform.Finally,the DOA was estimated by ESPRIT algorithm.Theoretical analysis and simulation results verified that this approach could achieve more accurate DOA estimates and did not decrease effective array aperture and detected the number of(N-1) coherent signals with N sensors under low SNR and small sample snapshots,which increased utilization of array elements.
出处 《探测与控制学报》 CSCD 北大核心 2010年第5期55-59,共5页 Journal of Detection & Control
基金 国家自然科学基金项目资助(61071196) 国家自然科学基金-中物院NSAF联合基金项目资助(10776040) 教育部新世纪优秀人才支持计划资助(NCET-10-0927) 信号与信息处理重庆市市级重点实验室建设项目资助(CSTC 2009CA2003) 重庆市自然科学基金项目资助(CSTC 2009BB2287)
关键词 分数阶傅里叶变换 虚拟阵列变换 相干宽带线性调频信号 波达方向估计 fractional Fourier transform virtual array transform correlation wideband LFM direction of arrival estimation.
  • 相关文献

参考文献7

  • 1Belouchrani A,Amin M G.Time-frequency music[J].IEEE Signal Processing Letters,1999,6(5):109-110. 被引量:1
  • 2Amin M G.Spatial time-frequency distributions for direction finding and blind source separation[J].In Proc SPIE,1999,37(23):62-70. 被引量:1
  • 3张艳红,齐林,穆晓敏,陶然.基于分数阶傅立叶变换的WLFM信号DOA估计[J].信号处理,2005,21(z1):57-60. 被引量:7
  • 4QU Haitao,QI Lin,MU Xiaomin,et al.Estimation of coherent wideband LFM signals based on fractional Fourier domain[C]//Proceedings of the First International Conference on Control(1CICIC'06).Beijing,China:[s.n.],2006,3:18-21. 被引量:1
  • 5陶然等著..分数阶Fourier变换的原理与应用[M].北京:清华大学出版社,2004:180.
  • 6ZHANG Yanhong,QI Lin,MU Xiaomin,et al.2-D DOA estimation of wideband LFM signal in fractional Fourier domain[C]//Proceedings of the First International Conference on Innovative Computing,Information and Control(1CICIC'06).Beijing,China:[s.n.],2006,3:6-9. 被引量:1
  • 7丁卫安,马远良.虚拟阵列变换法解相干信号MUSIC算法研究[J].微波学报,2008,24(2):27-30. 被引量:12

二级参考文献14

  • 1[1]Moeness G. Amin. Spatial Time-Frequency distributions for direction finding and blind source separation. In Proc.SPIE, 1999, 723: 62-70. 被引量:1
  • 2[2]Moeness G. Amin. Time-Frequency MUSIC. IEEE Signal Processing letters, May 1999,6(5). 被引量:1
  • 3[3]Alex B. Gershman and Moeness G. Amin. Wideband Direction-of-Arrival Estimation of Multiple Chirp Signals Using Spatial Time-Frequency Distributions. IEEE Signal Processing letters, June 2000,7(6). 被引量:1
  • 4[4]Moeness G. Amin. Coherent wideband DOA estimation of Multiple FM Signals using Spatial Time-Frequency distributions. IEEE Signal Processing letters, 2000. 被引量:1
  • 5[5]Moeness G. Amin. Polarimetric Time-Frequency MUSIC in Coherent Signal Environment. IEEE Signal Processing letters, 2003. 被引量:1
  • 6[6]Yimin Zhang, M GAmin. Spatial averaging of TimeFrequency distributions for signal recovery in uniform linear arrays. IEEE Trans. Signal Processing, 2000,48(10): 2892-2902. 被引量:1
  • 7[7]Yimin Zhang, Weifeng Mu and M GAmin. Subspace analysis of spatial Time-Frequency distributions matrices.IEEE Trans. Signal Processing, 2001, 49(4): 747-758. 被引量:1
  • 8[8]Y. Zhang, W. Mu and M. G. Amin. Time-Frequency maximum likelihood methods for direction finding. J.Franklin Inst, July 2000, 337(4): 483-497. 被引量:1
  • 9[9]Namias V. The fractional Fourier transform and its application in quantum mechanics. J Inst Appl Math,1980, 25: 241-265. 被引量:1
  • 10[10]D. A. Linebarger, R. D. DeGroat and E. M. Dowling.Efficient direction-finding methods employing forwardbackward averaging. IEEE Trans. Signal Processing,Aug. 1994, 42: 2136-2145. 被引量:1

共引文献17

同被引文献19

  • 1袁泉,石昭祥.一种基于空间时频分布的波达方向估计方法[J].探测与控制学报,2007,29(2):50-53. 被引量:1
  • 2王宏,李洪升,杨日杰,何友.一种基于改进传播算子的波达方向估计方法[J].探测与控制学报,2007,29(3):41-44. 被引量:1
  • 3司锡才,谢纪岭.阵列天线通道不一致性校正的辅加阵元法[J].系统工程与电子技术,2007,29(7):1045-1048. 被引量:6
  • 4WEISS A J, FRIENDLANDER B. Eigenstructure methods for direction finding with sensor gain and phase uncertainties [J]. Circuits, Systems and Signal Processing, 1990, 9 (3) : 271-300. 被引量:1
  • 5CHENG Chun-yue, LIU Ying--hua. A calibration algo- rithm for gain and phase errors of array sensors based on a single nonlinear constraint [C]// Proceedings of 2005 IEEE International Symposium on Microwave, Antenna, Propa- gation and EMC Technologies for Wireless Communica- tions.[S. l.]: IEEE, 2005: 957-960. 被引量:1
  • 6LI You-ming, ER M H. Theoretical analyses of gain and phase error calibration with optimal implementation for line- ar equispaced array [J]. IEEE Transactions on Signal Pro- cessing, 2006, 54 (2): 712-723. 被引量:1
  • 7REED I S, MALLETT J D, BRENNAN L E. Rapid con- vergence rate in adaptive arrays [J]. IEEE Trans. on AES, 1974, 10: 853-863. 被引量:1
  • 8Josh Griffith Erling. Ststitical prefomancl analysis of source localization in multisorce, multiarray networks [J]. US:The Pennsylvania State University, 2005. 被引量:1
  • 9甘玲,刘国庆.基于小波提升和独立分量分析的运动目标检测[J].计算机应用于软件,2010,27(5):257-159. 被引量:1
  • 10Shoko Araki, Hiroshi Sawada,Ryo Mukai,Shoji Makino. DA estimation for multiple sparse sources with arbitrar- ily arranged multiple sensors[J]. J sign process syst, 2011 (63) : 265-275. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部