期刊文献+

基于交叉和自适应权重的混合粒子群优化算法 被引量:5

Hybrid particle swarm optimization algorithm based on crossover and adaptive weight
下载PDF
导出
摘要 针对粒子群算法易陷入"局部最优解"和搜索精度逐渐降低的缺点,提出了基于交叉和自适应权重的混合粒子群优化算法。加入的交叉操作使得种群在粒子数目不变的情况下多样性得以维持,而自适应权重有效地平衡了整个算法的全局与局部搜索能力。通过函数测试实验表明,新的算法能够避免早熟收敛问题,有效地提高了其寻优能力。 To overcome the disadvantage of PSO such as easily getting into the local extremum and the lower search accuracy,hybrid particle swarm optimization with crossover and adaptive weight is proposed.Crossover operation can make the particle swarm maintain diversity and adaptive weight effectively balances the ability of global and local search of the whole algorithm.The result of the experiment shows that the novel algorithm can avoid the premature convergence effectively and search capability is better.
作者 刘瑞 刘悦
出处 《信息技术》 2010年第11期146-148,共3页 Information Technology
关键词 粒子群优化算法 交叉 惯性权重 自适应 particle swarm optimization algorithm crossover inertia weight self-adaptation
  • 相关文献

参考文献9

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C] //Proceedings of the IEEE International Conference on Neural Networks,1995:1942-1948. 被引量:1
  • 2Eberhart R,Kennedy J.A new optimizer using particle swarm theory.Proc of the Sixth[C].International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995:39-43. 被引量:1
  • 3Shi Y,Eberhart R C.A modified particle swarm optimizer.[C] //Proceedings of the IEEE CEC.1998:303-308. 被引量:1
  • 4Van den Bergh F,Engelbrecht A P.A cooperative approach to particle swarm optimization[J].IEEE Trans.on Evolut.Comput.2004,8:225-239. 被引量:1
  • 5Holland J H.Adaptation in Natural and Artificial Systems[J].Ann Arbor:University of Michigan Press,1975. 被引量:1
  • 6Price K,Storn R,Lampinen J.Differential Evolution-A Practical Approach to Global Optimization[J].Berlin:Springer,2005. 被引量:1
  • 7王凌,刘波编著..微粒群优化与调度算法[M].北京:清华大学出版社,2008:219.
  • 8Shi Y,Eberhart R C.Empirical study of particle swarm optimization[C] // Proceedings of the IEEE Congress on Evolutionary Computation,1999:1945-1950. 被引量:1
  • 9黄轩,张军,詹志辉.基于随机惯量权重的快速粒子群优化算法[J].计算机工程与设计,2009,30(3):647-650. 被引量:35

二级参考文献11

  • 1Kennedy J, Eberhart R C.Particle swarm optimization [C]. Proceedings of the IEEE International Conference on Neural Networks, 1995:1942-1948. 被引量:1
  • 2Holland J H. Adaptation in natural and artificial systems [M]. University Michigan Press, 1975. 被引量:1
  • 3Parsopoulos K E,Vrahatis M N.Recent approaches to global optimization problems through particle swarm optimization [J]. Natural Computing,2002,1 (3):235-306. 被引量:1
  • 4Hu X,Eberhart R C.Multiobjective optimization using dynamic neighborhood particle swarm optimization[C]. Proceedings of the IEEE congress on Evolutionary Computation, 2002: 1677-1681. 被引量:1
  • 5Hu X,Eberhart R C.Adaptive particle swarm optimization: detection and response to dynamic system[C]. Proceedings of the IEEE congress on Evolutionary Computation,2002:1666-1670. 被引量:1
  • 6Laskari E C,Parsopoulos K E,Vrahatis M N.Particle swarm optimization for maximum problems[C]. Proceedings of the IEEE Congress on Evolutionary computation, 2002:1582-1587. 被引量:1
  • 7Shi Y, Eberhart R C.A modified particle swarm optimization[C]. Proceedings of the IEEE Congress on Evolutionary Computation, 1998:303-308. 被引量:1
  • 8Shi Y, Eberhart R C.Empirical study of particle swarm optimization [C]. Proceedings of the IEEE Congress on Evolutionary Computation, 1999:1945-1950. 被引量:1
  • 9Shi Y, Eberhart R C.Fuzzy adaptive particle swarm optimization [C].Proceedings of the IEEE Congress on Evolutionary Computation, 2001:101-106. 被引量:1
  • 10Eberhart R C,Shi Y.Tracking and optimizing dynamic systems with particle swarms[C].Proceedings of the IEEE Congress on Evolutionary Computation,2001:94-100. 被引量:1

共引文献34

同被引文献56

引证文献5

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部