期刊文献+

基于方向小波变换的高斯噪声图像恢复方法 被引量:4

Gauss Noise Image Recovering Method Based on Directional Wavelet Transform
下载PDF
导出
摘要 提出一种基于方向小波变换的相关和阈值去噪方法,恢复高斯噪声图像.方向小波去掉了标准二维小波变换仅沿水平和竖直两个方向的限制,可沿任意方向变换,这种多方向组合变换方法有利于削弱Gibbs效应,对去噪后图像的边界保护具有积极作用.实验结果表明,相对于标准小波变换,该方法无论是PSNR值还是视觉效果都较原有的方法更好. A correlation and threshold denoising method based on the directional wavelet transform was proposed in order to restore the images which were contaminated by the Gaussian noises. The directional wavelet breakthroughs the restriction of the standard 2D wavelet transforms only along horizontal and vertical directions, can transform along auy directions. Not only does it weaken the Gibbs effect, but it can protect image edges. The experiment results show our method has better performances than the denoising method based on the standard wavelet in both PSNR and visual effects.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2010年第6期987-994,共8页 Journal of Jilin University:Science Edition
基金 吉林省科技发展计划项目(批准号:20050327_1 20050327_2)
关键词 方向小波变换 高斯噪声 图像恢复 directional wavelet transform Guass noise image denoising
  • 相关文献

参考文献35

  • 1Pitas I,Venetsanopoulos A N.Nonlinear Digital Filters:Principles and Applications[M].Boston:Kluwer Academic,1990. 被引量:1
  • 2Coyle E J,Lin J H,Gabbouj M.Optimal Stack Filtering and the Estimation and Structural Approaches to Image Processing[J].IEEE Trans on Acoustics,Speech,and Signal Processing,1989,37(12):2037-2066. 被引量:1
  • 3Geman D,Reynolds G.Constrained Restoration and the Recovery of Discontinuities[J].IEEE Trans Pattern Analysis and Machine Intelligence,1992,14(3):367-383. 被引量:1
  • 4Wong E Q,Algazi V R.Image Enhancement Using Linear Diffusion and an Improved Gradient Map Estimate[C] //Proceedings of IEEE International Conference on Image Processing.Los Alamitos:IEEE,1999:154-158. 被引量:1
  • 5YOU Yu-li,Kaveh M.Fourth-Order Partial Differential Equations for Noise Removal[J].IEEE Trans Image Processing,2000,9(10):1723-1730. 被引量:1
  • 6Vidakovic B,Lozoya C B.On Time-Dependent Wavelet Denoising[J].IEEE Trans Signal Processing,1998,46(9):2549-2554. 被引量:1
  • 7Donoho D L,Johnstone I M.Ideal Spatial Adaptation by Wavelet Shrinkage[J].Biometrika,1994,81(3):425-455. 被引量:1
  • 8Donoho D L,Johnstone I M,Kerkyacharian G,et al.Wavelet Shrinkage:Asymptopia[J].Journal of Royal Statistics Society Series,1995,57:301-369. 被引量:1
  • 9Krim H,Pesquet J C.On the Statistics of Best Bases Criteria[M].Wavelets and Statistics of Lecture Notes in Statistics.New York:Springer-Verlag,1995:193-207. 被引量:1
  • 10PAN Quan,ZHANG Lei,DAI Guan-zhong,et al.Two Denoising Methods by Wavelet Transform[J].IEEE Trans Signal Processing,1999,47(12):3401-3406. 被引量:1

二级参考文献13

  • 1郭显久,贾凤亭.基于小波多尺度乘积的信号去噪算法[J].辽宁工程技术大学学报(自然科学版),2005,24(5):723-726. 被引量:6
  • 2Guanghong He, Yingjun Pan, Wei Jin. An Improved Image Denoising Method Based on Multi- Scale Correlation in Wavelet Demain[C).8th international eotfferenee on signal processing proceoding, 2006, Val Ⅱ of IV, 1322 - 1325. 被引量:1
  • 3Thitimajshima P,. Rangsanseri Y, Rakprathanporn P. A simple SAR speckle reduction by wavelet thresholding[ A ]. In: Proceedings of the 19th Asian Conference on Remote Sensing ACRS98 [ C ], Manila, Philippines, 1998: 141-145. 被引量:1
  • 4Velisavljevic V, Beferull-Lozano B, Vetterli M, et al. Directionlets: anisotropic multi-directional representation with separable filtering [J]. IEEE Transactions on Image Processing, 2006, 15 ( 7 ) : 1916-1933. 被引量:1
  • 5Velisavljevic V, Dragotti P L, Vetterli M, Directional wavelet transforms and frames [ A]. In: Proceedings of IEEE International Conference on Image Processing ( ICIP2002 ) [ C ] , New York, NY, USA, 2002: 589-592. 被引量:1
  • 6Goodman J W. Some fundamental properties of speckle [ J]. Journal of Optical Society of America, 1976, 66( 11 ) : 1305-1310. 被引量:1
  • 7Arsenauh H H, April G. Properties of speckle integrated with a finite aperture and logarithmically transformed [ J ]. Journal of the Optical Society of America, 1976, 66 ( 11 ) : 1160-1163. 被引量:1
  • 8Xie H, Pierce L, Ulaby F T. Statistical properties of logarithmically transformed speckle [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(3) : 721-727. 被引量:1
  • 9谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:254
  • 10池明旻,卢刚,黄盛璋,李郁.小波软阈值算法去除SAR图像中的Speckle噪声[J].厦门大学学报(自然科学版),2002,41(6):756-758. 被引量:11

共引文献50

同被引文献36

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部