期刊文献+

基于神经网络和形态学的钢表面缺陷识别 被引量:3

Defect Recognition of Steel Surface Based on Neural Networks and Morphology
下载PDF
导出
摘要 钢表面图像的信噪比很低,探测目标很小,形状也不规则,因此钢材表面缺陷难于识别。引进基于神经网络和形态学的图像识别方法检测钢表面的各种缺陷,简述图像的预处理和BP神经网络建立的基本过程。通过对比BP神经和RGB阈值方法对钢表面图像的分割结果,表明BP神经网络方法优于RGB阈值方法。利用形态学处理方法过滤噪声,使结果更清晰。此方法能检测出不同类型的缺陷,且具有很强的鲁棒性。 Steel surface defects are difficult to be recognized because signal-to-noise ratio of steel surface image is very low, and defect targets are small and their shapes are irregular. A hybrid image recognition approach based on neural networks and morphology was presented to detect various defects in steel surface image. The preprocess of image and building process of neural networks were discussed. The segmentation results of steel surface image under BP neural networks and RGB threshold value method were compared.The conclusion is that BP neural network is better than RGB threshold value method. Noise was filtered by morphological processing and the quality of the processed image is better. This method can detect different defections and has strong robustness.
出处 《机床与液压》 北大核心 2010年第21期26-28,共3页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(50775229)
关键词 神经网络 形态学 钢表面缺陷 图像识别 Neural networks Morphology Steel surface defects Image recognition
  • 相关文献

参考文献6

二级参考文献13

  • 1杨少军.桥梁拉索体系损伤的检测和监测方法[J].公路交通技术,2005,21(3):130-134. 被引量:18
  • 2吕新民,罗志勇,刘栋玉,王斌.用面阵CCD实时检测运动带钢表面孔洞[J].光电工程,1997,24(1):42-45. 被引量:9
  • 3彭启琮,管庆.DSP集成开发环境[M].北京:电子工业出版社,2004. 被引量:18
  • 4SCHOLKOPF B,SMOLA A.Nonlinear component analysis as kernel eigen value problem[J].Neural Computation,1998,10(5):1299-1319. 被引量:1
  • 5KITAHARA M,ACHENBACH J D,GUO Q C.Neural network for crack-depth determination from ultrasonic back-scattering data[J].Review of Progressin Quantitative Evaluation,1992(11):701-708. 被引量:1
  • 6OSAKADA K,YANG G B.Neural network for process planning of cold-forming[J].Anural of CIRP,1991,40(1):243-246. 被引量:1
  • 7Texas Instrument Incorporated.TMS320DM642 Evaluation Module Technical Reference [Z]. Texas, USA: Texas Instrument Incorporated, 2003. 被引量:1
  • 8Shapiro Linda G, Stockman George C. Computer Vision [M]. Beijing: China Machine Press, 2005. 被引量:1
  • 9Canny John. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698. 被引量:1
  • 10Braun Tomas. Parallel Image Processing [M]. Xi'an: Xi'an Jiaotong University Press, 2003. 被引量:1

共引文献29

同被引文献20

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部