期刊文献+

球形对象族的最优鲁棒镇定 被引量:2

Optimal robust stabilization for sphere plant family
下载PDF
导出
摘要 本文对球形对象族系统最优鲁棒镇定问题进行了研究.利用最小范数解方法求解球形对象族的可镇定性半径.可镇定性半径是系统稳定性半径的上界,最优控制器的稳定性半径等于镇定性半径.文中给出球形对象族最优鲁棒控制器的形式,并通过示例具体说明球形对象族最优鲁棒控制器的设计方法. This paper tackles the synthesis of the optimal robust controller for the sphere plant family. The stabilization radius of the sphere plant family determined by the minimum-norm solution approach is the upper bound of the stability radius. The optimal controller has a stability radius equal to the stabilization radius. This paper gives the form of the optimal controller and illustrates the procedures for synthesizing the optimal robust controller.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第11期1497-1503,共7页 Control Theory & Applications
基金 国家自然科学基金资助项目(69574003 69904003) 国家部委预研基金资助项目(YJ0267016)
关键词 球形对象族 可镇定性半径 稳定性半径 最优鲁棒控制器 sphere plant family stabilization radius stability radius optimal robust controller
  • 相关文献

参考文献9

二级参考文献18

  • 1伍清河,徐粒,穴泽义久.参数鲁棒镇定问题的可解性必要条件[J].自动化学报,2004,30(5):723-730. 被引量:6
  • 2Bartlett A C, Hollot C V, Huang L. Root location of an entire polytope of polynomials: It suffices to check the edges. Mathematics in Control Signals Systems, 1988, 1: 61- 71 被引量:1
  • 3Chapellat H, Bhattacharyya S P. A generalization of Kharitonov′s theorem: Robust stability of interval plants. IEEE Transactions on Automatic Control, 1989, 34(3): 306-311 被引量:1
  • 4Barmish B R, Hollot C V, Kraus F J, Tempo R. Extreme point results for robust stabilization of interval plants with first order compensators. IEEE Transactions on Automatic Control, 1992, 37(6): 707-714 被引量:1
  • 5Barmish B R. New Tools for Robustness of Linear Systems. New York: Macmillan Publishing Company, 1994 被引量:1
  • 6Blondel V, Gevers M. Simultaneous stabilizability of three linear systems is rationally undecidable. Mathematics in Control Signals Systems, 1993, 6: 135- 145 被引量:1
  • 7Vidyasagar M. Control System Synthesis: A Factorization Approach. Cambridge, Massachusetts: The MIT Press, 1985 被引量:1
  • 8Wu Q H. On the radius of parity interlacing property of plant family with parameter uncertainties. In: Proceedings of the 38th IEEE Conference on Decision and Control, Institute of Electrical and Electronics Engineering, Inc, 1999,2294~2299 被引量:1
  • 9Youla D C, Bongiorno J J, Jr. and Jabr H A. Modern Wiener-Hopf design of optimal controllers. Part I: The singleinput case. IEEE Transactions on Automatic Control, 1976, 21(1): 3-14 被引量:1
  • 10A. C. Bartlett,C. V. Hollot,Huang Lin.Root locations of an entire polytope of polynomials: It suffices to check the edges[J]. Mathematics of Control, Signals, and Systems . 1988 (1) 被引量:1

共引文献7

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部