摘要
矩形板是一种最常见、工程应用最广的结构部件,它广泛应用于印刷电路板、硅片以及微机电系统中的敏感元件等小型器件中。为了完成部件的准确设计与预测,需要对矩形平板在各种条件下的情况进行分析。基于Mindlin平板理论,本文提出一种求解矩形平板在自由、简支、固支混合边界条件下的曲率分析方法。用差分求积法(DQM)求解系统差分方程,并将DQM求得的数值解与现有文献报道中的解值进行细致地比较工作后,验证了该方法的准确性。
This paper presents and approximate buckling analysis of rectangular plates based on the Mindlin plate theory. The plates are subject to combinations of the free, simply support4ed and clamped boundary conditions. Solutions to the problems are obtained by applying the differential quadrature method(DQM) to the systematic differential equations. In order to establish the validity and accuracy of the method, detailed convergence study is carried out, and the numerical results obtained using the DQM are compared with those reported in the existing literature.
出处
《传感器世界》
1999年第4期27-31,共5页
Sensor World
关键词
差分求积法
正则化
离散化
敏感元件
矩形板
Differential quadrate method(DQM),normalization,disecretisation,boundary condition,convergence