摘要
将双重互易杂交径向边界点法用于求解一般形式的二阶椭圆型偏微分方程。把方程的解分成通解和特解2个部分,通解用杂交径向边界点法求解,特解用双重互易法求解。数值算例表明,用该法求解二阶椭圆型偏微分方程是有效的。
The dual reciprocity hybrid radial boundary node method is used to solve the second-order elliptic partial differential equation of general form.The solution is composed of two parts:the general solution and particular solution.The general one is solved by the hybrid radial boundary node method,and the particular one is solved by the dual reciprocity method.Numerical examples show that this method is efficient for solving the second-order elliptic partial differential equation.
出处
《长江大学学报(自科版)(上旬)》
CAS
2010年第3期427-429,共3页
JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
关键词
椭圆型偏微分方程
杂交径向边界节点法
径向基点插值
双重互易法
elliptic partial differential equation
hybrid boundary node method
radial basis point interpolation
dual reciprocity method