期刊文献+

基于二维对称交叉熵的红外图像阈值分割 被引量:3

Threshold segmenation method for infrared images based on 2-D symmetric cross-entropy
原文传递
导出
摘要 针对现有的阈值选取方法应用于目标与背景面积相差悬殊的红外图像时常导致严重的误分割现象,本文提出了一种基于对称交叉熵及背景与目标面积差的红外目标图像阈值选取方法。对称交叉熵能确保分割后类的内聚性好,而背景与目标面积差可抑制均等分割的趋势,将两者综合构成了更为合理的阈值选取准则函数。首先导出了一维阈值选取公式;然后给出了二维直方图斜分阈值及二维直方图斜分的简化阈值选取方法,抗噪性能明显改善;最后与二维斜分的最大熵阈值、Otsu阈值及非对称交叉熵阈值选取方法进行了比较,实验结果表明,本文方法在分割效果上具有明显的优势。 When existing methods are applied to segment infrared images with significant area difference between background and target,they often lead to severe segmentation errors.Thus,a threshold segmentation method for infrared target images is proposed based on the symmetric cross-entropy and the area difference between background and target.The symmetric cross-entropy can make the cohesion performance better,and the area difference between background and target is used to inhibit the tendency of an equal division.Therefore,a more reasonable threshold selection rule is formed comprehensively.First of all,the 1-D threshold selection formula is derived.Then it is extended to the 2-D histogram,and the threshold method and the simplified thresholding method based on oblique segmentation of 2-D histogram are proposed,so that the anti-noise performance is improved obviously.Finally,the suggested methods are compared with the threshold methods of the maximum entropy,the Otsu and the symmetric cross-entropy based on oblique segmentation of 2-D histogram.The experimental results show that the suggested methods are more effective in segmenting infrared images.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2010年第12期1871-1876,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金资助项目(60872065)
关键词 红外图像分割 对称交叉熵 背景与目标面积差 二维直方图斜分 infrared image segmentation symmetric cross-entropy area difference between background and target oblique segmentation of 2-D histogram
  • 相关文献

参考文献8

二级参考文献78

共引文献175

同被引文献39

  • 1吴一全,朱兆达.图像处理中阈值选取方法30年(1962—1992)的进展(二)[J].数据采集与处理,1993,8(4):268-282. 被引量:96
  • 2Gigengack F, Ruthotto L, Burger M, et al. Motion correction in dual gated cardiac PET using mass-preserving image regis- tration[J]. IEEE Transactions on Medical Imaging, 2012,31(3) :698-712. 被引量:1
  • 3Chen X, Udupa J K, Bagci U, et al. Medieal image segmentation by combining graph cuts and oriented active appearance models[J]. IEEE Transactions on Image Processing, 2012,21 (4) ~2035-2046. 被引量:1
  • 4Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of histogram[J]. Computer Vision, Graphics and Image Processing, 1985,29 (1) : 273-285. 被引量:1
  • 5Abutaleb A S. Automatic thresholding of gray-level picture using two-dimensional entropies[J].Pattern Recognition, 1989, 47(1) :22-32. 被引量:1
  • 6Brink A D. Thresholding of digital image using two-dimensional entropies[J]. Pattern Recognition, 1992,25 (8) :803-808. 被引量:1
  • 7Li C H, Lee C K. Minimum cross entropy thresholding[J]. Pattern Recognition, 1993,26(4) : 617-625. 被引量:1
  • 8Brink A D, Pendock N E. Minimum cross-entropy threshold selection[J]. Pattern Recognition, 1996,29 (1) : 179-189. 被引量:1
  • 9Pal N R. On minimum cross-entropy thresholding[J].Pattern Recognition, 1996,29(4):575-580. 被引量:1
  • 10Li C H, Tam P K S. An iterative algorithm for minimum cross entropy thresholding[J]. Pattern Recognition Letters, 1998, 19(8) : 771-776. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部