期刊文献+

基于熵最小化的协作式随机检测宽带频谱的策略 被引量:1

Least entropy based randomized strategy for wideband spectrum sensing with cooperation
下载PDF
导出
摘要 针对认知无线电中的宽带频谱检测,从信息熵角度分析了信道状态估计的准确性与熵的关系,进而提出一种基于熵最小化的协作式随机检测宽带频谱的策略。该策略充分利用了信道状态的先验信息和实际检测所得信息,选择使系统信息熵最小化的信道进行检测,从而自动调节各个信道检测时间间隔。性能分析和仿真实验表明,基于熵最小化的检测策略有效地提高了信道状态估计准确性和检测的效率。 To study the strategy for wideband spectrum sensing in cognitive radio system,the relation between the accuracy of channel state estimation and entropy was analyzed from the perspective of information entropy.And then a least entropy based randomized strategy(LERS) for wideband spectrum sensing with cooperation was proposed.By fully utilizing priori information and actually sensed results of channel states,the proposed strategy could select sensing channels to minimize total entropy,and the spectrum sensing interval of each channel was automatically regulated.Theoretic analyses and simulation results show that the least entropy based strategy effectively improves the accuracy of channel state estimation and the efficiency of spectrum sensing.
出处 《通信学报》 EI CSCD 北大核心 2010年第11期130-137,共8页 Journal on Communications
基金 国家重点基础研究发展计划("973"计划)基金资助项目(2007CB310602) 国家科技支撑计划基金资助项目(2008BAH30B11) 广东省中国科学院全面战略合作基金资助项目(2009B091300010)~~
关键词 认知无线电 频谱检测策略 信道状态估计 检测时间间隔 熵最小化 cognitive radio spectrum sensing strategy channel state estimation spectrum sensing interval least entropy
  • 相关文献

参考文献1

二级参考文献3

共引文献8

同被引文献19

  • 1Tandra R,Sahai A,Mishra S M.What is a spectrum hole and what does it take to recognize one.?[J].Proceedings of the IEEE,2009,97 (5):824-848. 被引量:1
  • 2Zhao Y,Le B,Jeffrey.Network support:The radio environment map[M].Cognitive Radio Technology,ELSEVIE,2006,337-364. 被引量:1
  • 3Zhao Y,Zhao Y,Raymond D,et al.Performance evaluation of radio environment map-enabled cognitive spectrumsharing networks[A].Military Communications Conference.Orlando[C],2007:1-7. 被引量:1
  • 4Do T,Mark B L.Joint spatial-temporal spectrum sensing for cognitive radio networks[A].Information Sciences and Systems.Baltimore[C],2009:124-129. 被引量:1
  • 5Bazerque J A,Giannakis G B.Distributed spectrum sensing for cognitive radio networks by exploiting sparsity[J].Signal Processing,IEEE Transactions on,2010,58(3):1847-1862. 被引量:1
  • 6Cover T M,Thomas J A.Elements of information theory[M].Johy Wiley & Sons,Inc.,1991. 被引量:1
  • 7Patwari N,Hero A O I,Perkins M,et al.Relative location estimation in wireless sensor networks[J].Signal Processing,IEEE Transactions on,2003,51(8):2137-2148. 被引量:1
  • 8Zhao Q,Tong L,Swami A,et al.Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks:A POMDP framework[J].Selected Areas in Communications,IEEE Journal on,2007,25(3):589-600. 被引量:1
  • 9Chowdhury K R,Akyildiz I F.Cognitive wireless mesh networks with dynamic spectrum access[J].Selected Areas in Communications,IEEE Journal on,2008,26(1):168-181. 被引量:1
  • 10Urkowitz H.Energy detection of unknown deterministic signals[J].Proceedings of the IEEE,1967,55(4):523-531. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部