期刊文献+

A Hierarchy of Compatibility and Comeasurability Levels in Quantum Logics with Unique Conditional Probabilities 被引量:1

A Hierarchy of Compatibility and Comeasurability Levels in Quantum Logics with Unique Conditional Probabilities
下载PDF
导出
摘要 In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lueders-von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases.
机构地区 Zillertalstrasse
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第12期974-980,共7页 理论物理通讯(英文版)
关键词 quantum measurement conditional probability quantum logic operator algebras 概率水平 量子逻辑 兼容性 层次结构 希尔伯特空间 布尔代数 形式主义 量子力学
  • 相关文献

参考文献16

同被引文献8

  • 1M. Onorato,S. Residori,U. Bortolozzo,A. Montina,F.T. Arecchi.Rogue waves and their generating mechanisms in different physical contexts[J].Physics Reports.2013(2) 被引量:1
  • 2W. M. Moslem,P. K. Shukla,B. Eliasson.Surface plasma rogue waves[J].EPL (Europhysics Letters).2011(2) 被引量:1
  • 3Kibler, B,Fatome, J,Finot, C,Millot, G,Dias, F,Genty, G,Akhmediev, N,Dudley, J M.The Peregrine soliton in nonlinear fibre optics[J].Nature Physics.2010(10) 被引量:1
  • 4Nail Akhmediev,Adrian Ankiewicz,J.M. Soto-Crespo,John M. Dudley.Rogue wave early warning through spectral measurements?[J].Physics Letters A.2010(3) 被引量:1
  • 5N. Akhmediev,E. Pelinovsky.Editorial – Introductory remarks on “Discussion & Debate: Rogue Waves – Towards a Unifying Concept?”[J].The European Physical Journal Special Topics.2010(1) 被引量:1
  • 6N. Akhmediev,J.M. Soto-Crespo,A. Ankiewicz.Extreme waves that appear from nowhere: On the nature of rogue waves[J].Physics Letters A.2009(25) 被引量:1
  • 7Christian Kharif,Efim Pelinovsky.Physical mechanisms of the rogue wave phenomenon[J].European Journal of Mechanics / B Fluids.2003(6) 被引量:1
  • 8Yuji Kodama.Optical solitons in a monomode fiber[J].Journal of Statistical Physics (-).1985(5-6) 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部