期刊文献+

小波采样的滤波算法研究 被引量:2

Wavelet Filtering Algorithm of Wavelet Sampling
下载PDF
导出
摘要 针对经典小波采样理论不能如同香农定理应用采样值对连续信号进行滤波,该文在小波采样存在条件下,提出一种基于采样值的小波滤波算法。该算法突破经典小波采样理论仅研究单个Hilbert空间信号重构的局限性,从多分辨分析逼近出发,基于采样值构建信号逼近准则函数,进而计算信号在小波空间的正交投影,实现小波滤波。仿真试验证明该算法能够有效地基于采样值,对连续信号进行小波滤波。 A new algorithm of wavelet sampling is proposed since the typical wavelet sampling lacks the capacity to filter the continuous signal by the samples as Shannon sampling does.From the viewpoint of Multiresolution approximation,a new cost function based on the samples is introduced to estimate the approximation of signal in this algorithm,so that the signal is decomposed into the orthogonal components,which has break through the limit of typical wavelet sampling that only considers the construction of signal in one Hilbert space.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第6期900-905,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60474069)
关键词 离散信号处理 采样理论 信号滤波 小波分析 discrete signal processing sampling theorem signal filtering wavelet analysis
  • 相关文献

参考文献14

  • 1VAIDYANATHAN P P. Generalizations of the sampling theorem: Seven decades after nyquist[J]. IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory and Applications, 2001, 48 (9): 1094-1108. 被引量:1
  • 2ZHANG Yao. A method to reconstruct nth-order periodically nonuniform sampled[J]. Journal of Electronic Science and Technology, 2006, 2 (2): 15-18. 被引量:1
  • 3WALTER G G. sampling theorem for wavelet subspaces[J]. IEEE Transaction on Information Theory, 1992, 38(2): 881-884. 被引量:1
  • 4NAOKI SAITO, BEYLKIN G Multiresolution representations using the auto-correlation functions of compactly supported wavelets[C]//Proceedings of the International Conference on Wavelets and Applications. Toulouse, France: Frontiesr, 1992: 381-384. 被引量:1
  • 5NAOKI SAITO, BEYLKIN G. Multiresolution representations using the autocorrelation functions of compactly supported wavelets[J]. IEEE Transactions on Signal Processing. 1993, 41(12): 3584-3590. 被引量:1
  • 6LIU You-ming. Irregular sampling for spline wavelet subspaces[J]. IEEE Transactions on Information Theory. 1996, 42(2): 623-627. 被引量:1
  • 7CHEN Wen, ITOH Shui-chi. Irregular sampling theorems for wavelet subspaces[J]. IEEE Transaction on Information Theory. 1998, 44 (2): 1131-1142. 被引量:1
  • 8WANG Qiao, WU Le-nan. Translation invariance and sampling theorem of wavelet[J]. IEEE Transaction Signal Processing. 2000, 48(5): 1471-1474. 被引量:1
  • 9LU Y M, MINH N D. A theory for sampling signals from a union of subspaces[J]. IEEE Transactions on Signal Processing. 2008, 56 (6): 2334-2345. 被引量:1
  • 10DEVORE R A, KONGYAGIN S V, TEMLYAKOV V N. Hyperbolic wavelet approximation. Constructive Approximation, 1998, 14: 1-26. 被引量:1

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部