期刊文献+

粒子滤波和多站TOA的外辐射源雷达跟踪方法 被引量:8

FM based passive radar tracking using particle filter and TOA measurements
下载PDF
导出
摘要 针对外辐射源雷达跟踪常采用扩展卡尔曼滤波(extended Kalman filter,EKF)算法导致其跟踪精度受闪烁噪声影响较大的问题,结合到达时间(time of arrival,TOA)定位技术和粒子滤波(particle filter,PF)算法,提出一种适于闪烁噪声环境的外辐射源雷达跟踪方法。该方法通过多站TOA获得测量信息,利用双基地角来减弱目标雷达散射截面积(radar cross section,RCS)闪烁,采用非线性和非高斯的PF进行跟踪,能减小因闪烁噪声而导致的跟踪误差,避免EKF算法因线性化而带来的误差,从而提高跟踪精度。实验表明,该方法的跟踪性能优于EKF,尤其受闪烁噪声影响小,能提高闪烁噪声环境下的跟踪精度。实测数据验证了该方法的有效性。 In FM based passive radar,the tracking performance of the traditional extended Kalman filter(EKF) is affected seriously by the glint noise.To solve this problem,a new passive radar tracking method is proposed based on particle filter(PF) and time of arrival(TOA) measurements.The method gains TOA measurements by multi-stations,utilizes the different bistatic angles to relieve the radar cross-section(RCS) glint and then uses nonlinear and non-Gaussian PF to track target,which reduces the measurements error resulted from glint noise,avoids the error caused by EKF linearization,so it can improve the passive tracking precision.The simulations show that the performance of the new method is superior to that of the EKF,especially in glint noise environment.The real data demonstrate the validity of the proposed method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第11期2263-2267,共5页 Systems Engineering and Electronics
基金 国家部委重点基金(9140A07050908DZ0103) 国防重点实验室基金(9140C010507100C01) 教育部创新团队计划资助课题
关键词 无源跟踪 粒子滤波 到达时间 闪烁噪声 passive tracking particle filter(PF) time of arrival(TOA) glint noise
  • 相关文献

参考文献13

二级参考文献31

  • 1Teak Lyul Song. Observabilty of target tracking with bearingonly measurements[J]. IEEE Trans. on Aerospace and Electronic Systems, 1996,32 (4) : 1468 - 1471. 被引量:1
  • 2Wang Qiang, Guo Fucheng, Zhou Yiyu, et al. A single observer passive location method and accuracy analysis using phase difference rate of change only[C]//Proc, of the IEEE International Conference on Information and Automation, 2008 .. 1030 - 1033. 被引量:1
  • 3Griffiths H D, Baker C J. Passive coherent location radar systems. Part 1 :Performance prediction[C]//lEE Proc. of Radar Sonar and Navigation, 2005,152(3):153 - 159. 被引量:1
  • 4Julier S J, Uhlmann J K. A new method for the nonlinear transformation of means and covariance in filters and estimators[J].IEEE Trans. on Automatic Control, 2000, 45 (3) : 477 - 482. 被引量:1
  • 5Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[C] // Proc. of the IEEE Aerospace and Electronic Systems, 2004, 92(3): 401-422. 被引量:1
  • 6Gordon N, Salmond D. Novel approach to nonlinear and non-Gaussian Bayesian state estimation[C]// Proc. of Institute Electric Engineering, 1993, 140(2) :107 - 113. 被引量:1
  • 7Carpenter J, Clifford P. Improved particle filter for nonlinear problems[C]//IEE Proc. of Radar, Sonar and Navigation, 1999, 146(1): 2-7. 被引量:1
  • 8Farina A, Ristic B, Benvenuti D. Tracking a ballistic target: comparison of several nonlinear filters[J]. IEEE Trans. on Aerospace and Electronic Systems, 2002,38 (3) : 854 - 867. 被引量:1
  • 9Howland P E. Target tracking using television-based bistatic radar[C]//IEE Proc. of Radar, Sonar and Navigation, 1999,146(3) :166 - 174. 被引量:1
  • 10Griffiths, N R W Long. Television based bistatic radar [J]. IEE Proceeding Part F, 1986,133(7) :649~657. 被引量:1

共引文献336

同被引文献83

引证文献8

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部