Bacteriorhodopsin and SWCNT Scaffold for Optical Nanobiosensor
Bacteriorhodopsin and SWCNT Scaffold for Optical Nanobiosensor
摘要
This paper describes theoretical steps to develop an optical nanobiosensor using bacteriorhodopsin (BR) as the biomembrane and Single-Walled Carbon NanoTube (SWCNT) as the scaffold. Bacteriorhodopsin is a retinal protein used by archaea that come under the family of halobacteria. This retinal protein acts as a proton pump and resulting proton gradient is used to change the voltage that pass across the drain and source. The biosensor contains nano ISFET where the channel is made of a carbon nanotube for the conduction of current. The gate is replaced by bacteriorhodopsin biomembrane. Bacteriorhodopsin can be used as a molecular-level ultra fast bi-stable red / green photo switch for making 3D optical molecular memories that reliably store data with 10,000 molecules/bit. The molecules switch in femtoseconds. Biomembrane will sense 510 nm and 650 nm wavelength of light and the sensing voltage can be used to convert the data into digital signals. This molecular level memory device can be used for ‘Read-Write' operations. The sensor performance will also be ultra fast since it uses photons for the data storage, which are much faster than electrons used in normal memory devices, and the 3D storage capacity is much higher maximum of 10^13/cm^2.
参考文献10
-
1T. Gillbro, A.N. Kriebel, U.P. Wild, The origin of the red emission of light adapted purple membrane of H. Halobium, FEBS (Fed. Eur. Biochem. Soc.) Lett. 78 (1977) 57-60. 被引量:1
-
2J.A Bennett, R.R. Birge, Two-photon spectroscopy of diphenylbutadiene, The nature of the lowest-lying 1Ag*-nn* state, Journal of Chemical Physics 73 (9) (1980)4234-4246. 被引量:1
-
3J.B. Hurley, T.G. Ebrey, Energy transfer in the purple membrane of Halobacterium Halobium, Biophys. J. 22 (1978) 49-66. 被引量:1
-
4K.J. Kaufmann, V. Sunstrfm, T. Yamane, P.M. Rentzepis, Kinetics of the 580-nm ultrafast bacteriorhodopsin transient, Biophys. J. 22 (1978) 121-124. 被引量:1
-
5M. Tsuda, M. Glaccum, B. Nelson, T.G. Ebrey, Light isomerizes the chromophore of bacteriorhodopsin, Nature (Lond.) 287 (1980) 351-353. 被引量:1
-
6A. Cooper, Energy uptake in the first step of visual excitation, Nature (Lond.) 282 (1979) 531-533. 被引量:1
-
7B. Honig, V. Dinur, K. Nakanishi, V. Balogh-Nair, M.A. Gawinowicz, M. Arnaboldi, M.G. Motto, An external point-charge model for wavelength regulation in visual pigments, J. Am. Chem. Soc. 101 (1979) 7084-7086. 被引量:1
-
8B. Becher, J.Y. Cassim, Improved isolation procedures for the purple membrane of Halobacterium Halobium, Prep. Biochem. 5 (1975) 161-178. 被引量:1
-
9T. Rosenfeld, B. Honig, M. Ottolenghi, J.B. Hurley, T.G. Ebrey, On the role of the protein in the photoisomerization of the visual pigment chromophore, Pure Appl. Chem. 49 (1977) 341-351. 被引量:1
-
10B. Honig, Theoretical aspects of photoisomerization in visual pigments and bacteriorhodopsin, in: R.R. Alfano, (Ed.) Biological Events Probed by Ultrafast Laser Spectroscopy, Academic Press Inc., New York, 1982, pp. 281-296. 被引量:1
-
1光学记录、存储与器件[J].中国光学,1999(6):36-37.
-
2姚保利,郑媛,王英利,门克内木乐,董卫斌,雷铭,陈国夫.细菌视紫红质的非线性光学特性[J].量子电子学报,2004,21(1):121-122.
-
3Xin LIANG Zhi-yuan LI.Ion Channels as Antivirus Targets[J].Virologica Sinica,2010,25(4):267-280.
-
4Robert R.Birge,张圆,张继魁.绝非幻想的蛋白质计算机[J].微电脑世界,1996(2):38-41.
-
5陈桂英,张春平,郭宗霞,杨秀芹.细菌视紫红质在全光逻辑器件中的研究与应用[J].物理实验,2005,25(2):13-17. 被引量:4
-
6张长青.蛋白质光电装置──未来计算机的雏形[J].世界科学,1996,18(6):5-6. 被引量:1
-
7紫膜——神奇的生物纳米材料[J].光机电信息,2002(10):37-40.
-
8刘海龙,孙鹏飞,伦立军,李振兴.膜蛋白质间原子填充结构预测方法研究[J].哈尔滨理工大学学报,2008,13(6):13-15.
-
9罗建斌.抗菌生物材料的研究进展[J].高分子通报,2009(3):57-61. 被引量:5
-
10冯晓强,陈烽,田燕宁,侯洵,李宝芳,江龙.细菌视紫红质用于光子逻辑门的研究[J].光子学报,2001,30(1):1-5. 被引量:2