期刊文献+

Bacteriorhodopsin and SWCNT Scaffold for Optical Nanobiosensor

Bacteriorhodopsin and SWCNT Scaffold for Optical Nanobiosensor
下载PDF
导出
摘要 This paper describes theoretical steps to develop an optical nanobiosensor using bacteriorhodopsin (BR) as the biomembrane and Single-Walled Carbon NanoTube (SWCNT) as the scaffold. Bacteriorhodopsin is a retinal protein used by archaea that come under the family of halobacteria. This retinal protein acts as a proton pump and resulting proton gradient is used to change the voltage that pass across the drain and source. The biosensor contains nano ISFET where the channel is made of a carbon nanotube for the conduction of current. The gate is replaced by bacteriorhodopsin biomembrane. Bacteriorhodopsin can be used as a molecular-level ultra fast bi-stable red / green photo switch for making 3D optical molecular memories that reliably store data with 10,000 molecules/bit. The molecules switch in femtoseconds. Biomembrane will sense 510 nm and 650 nm wavelength of light and the sensing voltage can be used to convert the data into digital signals. This molecular level memory device can be used for ‘Read-Write' operations. The sensor performance will also be ultra fast since it uses photons for the data storage, which are much faster than electrons used in normal memory devices, and the 3D storage capacity is much higher maximum of 10^13/cm^2.
出处 《Journal of Life Sciences》 2010年第6期60-64,共5页 生命科学(英文版)
关键词 Optical nanobiosensor BR HALOBACTERIA nano ISFET (Ion-Sensitive Field-Effect Transistor) archaea. 单壁碳纳米管 细菌视紫红质 生物传感器 支架 细菌生物膜 分子水平 膜蛋白质 质子梯度
  • 相关文献

参考文献10

  • 1T. Gillbro, A.N. Kriebel, U.P. Wild, The origin of the red emission of light adapted purple membrane of H. Halobium, FEBS (Fed. Eur. Biochem. Soc.) Lett. 78 (1977) 57-60. 被引量:1
  • 2J.A Bennett, R.R. Birge, Two-photon spectroscopy of diphenylbutadiene, The nature of the lowest-lying 1Ag*-nn* state, Journal of Chemical Physics 73 (9) (1980)4234-4246. 被引量:1
  • 3J.B. Hurley, T.G. Ebrey, Energy transfer in the purple membrane of Halobacterium Halobium, Biophys. J. 22 (1978) 49-66. 被引量:1
  • 4K.J. Kaufmann, V. Sunstrfm, T. Yamane, P.M. Rentzepis, Kinetics of the 580-nm ultrafast bacteriorhodopsin transient, Biophys. J. 22 (1978) 121-124. 被引量:1
  • 5M. Tsuda, M. Glaccum, B. Nelson, T.G. Ebrey, Light isomerizes the chromophore of bacteriorhodopsin, Nature (Lond.) 287 (1980) 351-353. 被引量:1
  • 6A. Cooper, Energy uptake in the first step of visual excitation, Nature (Lond.) 282 (1979) 531-533. 被引量:1
  • 7B. Honig, V. Dinur, K. Nakanishi, V. Balogh-Nair, M.A. Gawinowicz, M. Arnaboldi, M.G. Motto, An external point-charge model for wavelength regulation in visual pigments, J. Am. Chem. Soc. 101 (1979) 7084-7086. 被引量:1
  • 8B. Becher, J.Y. Cassim, Improved isolation procedures for the purple membrane of Halobacterium Halobium, Prep. Biochem. 5 (1975) 161-178. 被引量:1
  • 9T. Rosenfeld, B. Honig, M. Ottolenghi, J.B. Hurley, T.G. Ebrey, On the role of the protein in the photoisomerization of the visual pigment chromophore, Pure Appl. Chem. 49 (1977) 341-351. 被引量:1
  • 10B. Honig, Theoretical aspects of photoisomerization in visual pigments and bacteriorhodopsin, in: R.R. Alfano, (Ed.) Biological Events Probed by Ultrafast Laser Spectroscopy, Academic Press Inc., New York, 1982, pp. 281-296. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部