期刊文献+

智能网络控制器在水处理中的研究与应用 被引量:1

Research and Application of Intelligent Networked Controller in Water Treatment
下载PDF
导出
摘要 针对水处理过程中混凝剂的准确投加,以及投药过程中的时滞、网络延迟等问题,采用基于网络学习控制的智能控制算法来改进投药控制系统。用远程专家系统和自学习BP神经网络复合算法的优点,即专家系统的前馈补偿能力解决流量、浊度突变、延迟等干扰因素;神经网络的非线性映射能力解决水处理非线性影响;滚动学习和反馈学习来解决时变、时滞等问题。该算法较好地解决了网络延迟造成的系统性能下降问题,加快了神经网络的训练速度。将该算法应用于水厂自动化系统,可以实现最佳投药量控制,水质符合标准,并取得良好的经济效益。 To the problem of adding coagulation accurately and the time-delay of the process of coagulant dosage,the intelligent control algorithm based on networked learning control is used to improve the dosing control system.Remote expert system(ES)and BP-NN is combined together.The feedforward compensation ability of ES is used to resolve the interfering factors of flow,turbidity mutation and time-delay.The neural network nonlinear mapping ability is used to solve the nonlinear effects of water treatment.Roll learning and feedback learning are used to solve the time-varying and time-delay problems.The proposed algorithm could solve the problem of network delay and speed training of BP-NN.It can achieve the optimal dosage,and the quality of the water accord with the standard.The result shows it can get well economic benefits.
出处 《控制工程》 CSCD 北大核心 2010年第6期751-754,共4页 Control Engineering of China
基金 湖南省科学技术与科技计划(2006GK3130) 湖南省自然科学基金奖励项目(05JJ30121)
关键词 智能控制器 神经网络 网络学习控制 加药控制器 intelligent controller BP neural network networked learning control dosing controller
  • 相关文献

参考文献8

二级参考文献25

  • 1于东江.水厂最佳投矾剂量的确定[J].给水排水,1993,19(5):41-42. 被引量:6
  • 2ZHU J B, JIM Z, RAO M, et al. An on-line wastewater quality predication system based on a time-delay neural network[J]. Engineering Applications of Artificial Intelligence, 1998, 11(6): 747- 758. 被引量:1
  • 3DAE S L, PETER A. Vanrolleghem, and Jong Moon Park. Hybird neural network modelling of a full-scale industrial wastewater treatment process[J]. Biotechnology and Bioengineering, 2002, 78(6): 670 - 682. 被引量:1
  • 4DAE S L, PETER A. Vanrolleghem, and Jong Moon Park. Parallel hybrid modeling methods for a full-scale cokes wastewater treatment plant[J]. Journal of Biotechnology, 2005, 115(3): 317 - 328. 被引量:1
  • 5DUAN J C, CHUNG F L. Cascaded fuzzy neural network model based on syllogistic fuzzy reasoning[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(2): 293 - 306. 被引量:1
  • 6RICARDO J G, CAMPELLO B. Hierarchical fuzzy relational models: Linguistic interpretation and universal approximation[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(3): 446 - 453. 被引量:1
  • 7ANDERSON J S, KIM H, MCAVOY T J, et al. Control of an alternating aerobic-anoxic activated sludge system - Part 1 Development of a linearization-based modeling approach[J]. Control Engineering Practice, 2000, 8(3): 271 - 278. 被引量:1
  • 8HENZE M, GRADY C, GUJER W, et al. Activated sludge model[C] //IAWQ Scientific and Technical Report. London: IAWQ, 1987. 被引量:1
  • 9YU W, MARCO A. MORENO A, et al. System identification using hierarchical fuzzy neural networks with stable learning algorithm[J]. Journal of Intelligent & Fuzzy System, 2007, 18(2): 171 - 183. 被引量:1
  • 10LJUNG L, SODERSTROM T. Theory and Practice of Recursive System Identification[M]. Cambridge: The MIT Press, 1983. 被引量:1

共引文献32

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部