期刊文献+

基于遥感分类与数学形态学的道路信息提取 被引量:3

Road extraction based on remote sensing classification and mathematic morphology
下载PDF
导出
摘要 利用遥感图像获得完整道路信息网一直是信息提取的热点和难点,研究了结合遥感分类和数学形态学提取道路,以期获得满意的结果。遥感分类能有效区分人工地物与自然地物,因此能避免自然地物对提取的影响;数学形态学中的腐蚀和膨胀算子对地物边缘很敏感,一直是边缘信息提取的主要方法。实验表明该思路能快速有效提取道路信息。 Road extraction from remote sensing image is always the hot and difficult problem for information extraction,the paper extracts road combining remote sensing classification and mathematic morphology.Remote sensing classification can divide artificial object and nature object, it will avoid the nature object effect during the road extraction.The erosion and dilation operator of mathematic morphology is very sensitive to the object edge.The result shows that the method can extract road information effectively.
作者 潘建平 李治
出处 《计算机工程与应用》 CSCD 北大核心 2010年第34期213-214,227,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.40701111) 测绘遥感信息工程国家重点实验室开放基金(No.09I05) 重庆科委科技公关项目(No.2008AC6113)~~
关键词 遥感分类 数学形态学 道路信息 边缘提取 remote sensing classification mathematic morphology road information edge extraction
  • 相关文献

参考文献6

二级参考文献30

  • 1JIZhen,LIHuihui,LIQi,ZHANGJihong,WUQinghua.A Novel Mathematical Morphology Filter and Its Performance Analysis in Noise Reduction[J].Chinese Journal of Electronics,2005,14(1):68-72. 被引量:3
  • 2黎夏.形状信息的提取与计算机自动分类[J].环境遥感,1995,10(4):279-287. 被引量:46
  • 3Russo F,Lazzari A.Color edge detection in presence of Gaussian noise using nonlinear prefiltering[J].IEEE Trans.on Instrumentation and Measurement,2005,54(1):352-358. 被引量:1
  • 4Shinha D and Dougherty E R.Fuzzy mathematical morphology[J] J.Vision,Communication and Imagine and Representation,1992,3 (3):286-302. 被引量:1
  • 5Bloch Isabelle,Colliot Olivier,Camara Oscar.Fusion of spatial relationships for guiding recognition,example of brain structure recognition in3D MRI[J].Pattern Recognition Letters 2005,26 (4):449-457. 被引量:1
  • 6Koskinen L,Astola J,Neuvo Y.Soft morphological filters[A].Proc.SPIE Int.Society of Optical Engineering[C],1999,1568:262 -270. 被引量:1
  • 7Gasteratos A,Tsalides S.Fuzzy soft mathematical morphology[J].Image Signal Processing,1998,145(1):41-49. 被引量:1
  • 8Lazzaroni Fabio,Leonardi,tRiccardo.High performance embeded Morphological wave-let coding[J].IEEE Signal Processing Letters,2003,10(10):293-295. 被引量:1
  • 9Michael Isard,Andrew Blake.CONDENSATION—Conditional Density Propagation for Visual Tracking[J].International Journal of Computer Vision.1998(1) 被引量:1
  • 10Doucet A,De F N,Gordon N.Sequential Monte Carlo Methods in Practice[]..2001 被引量:1

共引文献72

同被引文献47

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部